+0  
 
0
66
2
avatar

The solutions to 2x^2 - 10x + 13 = 0 are a+bi and a-bi, where a and b are positive. What is a*b?

 Apr 7, 2020
 #1
avatar+111329 
+1

2x^2  - 10x +  13  = 0

 

2(x^2 - 5x + 25/4)  + 13  - 50/4  =  0

 

2 ( x - 5/2)^2    +  2/4  =  0

 

2 ( x - 5/2)^2    =  -  1/2     divide  both sides  by 2

 

(x - 5/2)^2  = -1/4                take  both roots

 

x - 5/2 =   ±1/2 i

 

x = 5/2 ±1/2 i

 

a * b  =   (5/2)(1/2)  =   5/4

 

 

cool cool cool

 Apr 7, 2020
 #2
avatar+24983 
+2

The solutions to \(2x^2 - 10x + 13 = 0\) are \(a+bi\) and \(a-bi\), where a and b are positive.
What is \(a*b\)?

 

\(\begin{array}{|lrcll|} \hline (1) & (a+bi)+(a-bi) &=& \dfrac{10}{2} \\ & (a+bi)+(a-bi) &=& 5 \\ & 2a &=& 5 \\ & \mathbf{a} &=& \mathbf{2.5} \\ \hline (2) & (a+bi)(a-bi) &=& \dfrac{13}{2} \\ & a^2-(bi)^2 &=& 6.5 \\ & a^2-b^2i^2 &=& 6.5 \quad | \quad i^2 = -1 \\ & \mathbf{a^2+b^2} &=& \mathbf{6.5} \quad | \quad a=2.5 \\ & 2.5^2+b^2 &=& 6.5 \\ & b^2 &=& 0.25 \\ & \mathbf{b} &=& \mathbf{0.5} \\ \hline & a*b &=& 2.5*0.5 \\ & \mathbf{a*b} &=& \mathbf{1.25} \\ \hline \end{array}\)

 

laugh

 Apr 7, 2020

14 Online Users

avatar