We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
100
3
avatar

There are four even integers in the top five rows of Pascal's Triangle. How many even integers are in the top 10 rows of the triangle?

 May 24, 2019
 #1
avatar
+2

Just count them:

 

1   = R 0
1   1   = R 1
1   2   1   = R 2
1   3   3   1   = R 3
1   4   6   4   1   = R 4
1   5   10   10   5   1   = R 5
1   6   15   20   15   6   1   = R 6
1   7   21   35   35   21   7   1   = R 7
1   8   28   56   70   56   28   8   1   = R 8
1   9   36   84   126   126   84   36   9   1   = R 9
1   10   45   120   210   252   210   120   45   10   1   = R 10

 May 24, 2019
 #2
avatar+102763 
+2

Thanks Guest that is a good answer.

 

I just counted them too but  I did not need to work out all the numbers.

I drew it in the shape of the normal triangle but insead of putting the actual number I just put  o  for odd and  e  for even.

If 2 odds are added the answer will be even

If 2 evens are added the answer will be even 

If one even and one odd are added the answer will be odd.

 May 24, 2019
 #3
avatar
+2

n choose k is NOT divisible by some prime number p if and only if:

 

\(\{\frac{k}{p^i}\} \leq \{\frac{n}{p^i}\} \) ({x} is the fractional part of x) for all \(i\in\mathbb{N}\) 

 

In other words, if the representation of n in base p is amam-1....aand the representation of k in base p is bmbm-1....b0 then n choose k is NOT divisible by p if and only if \(\forall 0\leq i \leq m\enspace b_i \leq a_i\)

 

 

 

conclusion: if the representation in base p of n is amam-1....a0 then there are exactly \(\prod_{i=0}^{m} (a_i+1)\) values of k between 0 and n such that n choose k is NOT divisible by p

 

 

EDIT: here's a useful stack exchange thread

 May 25, 2019
edited by Guest  May 25, 2019
edited by Guest  May 25, 2019

29 Online Users

avatar
avatar