We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
263
1
avatar+4684 

Help.

 Dec 7, 2017
 #1
avatar+99580 
+1

We have

 

1d^6   -  6d^5*(5y)  + 15d^4*(5y)^2  -  20d^3*(5y)^3 + 15d^2(5y)^4 - 6d*(5y)^5 + 1(5y)^6

 

d^6  - 30d^5y + 375d^4y^2 - 2500d^3y^3 + 9375d^2y^3 -  18750dy^5 + 15625y^6

 

 

x^4  -  6x^2  - 7x  - 6 = 0 

 

Using the Rational roots Theorem, 3 is a root....

 

Using synthetic division  to find the remaining polynomial, we have

 

 

 

3  [  1   0     -6      - 7     - 6  ]

            3      9        9        6

       __________________

       1   3    3         2        0

 

 

So  we have

 

x^3  +  3x^2  +  3x   +  2       and we can write

 

x^3  +  3x^2  +  2x   + x + 2     factor

 

x ( x^2 + 3x + 2)  +  1 (x + 2)

 

x (x + 2)(x + 1) +  1 ( x + 2)

 

(x + 2)  [ x(x + 1) + 1 ]

 

(x + 2) [ x^2 + x + 1]  

 

So -2 is the other real root

 

And  using the quadratic formula....the roots of the other polynomial are

 

[-1 ± i√3] / 2

 

 

 

cool cool cool

 Dec 7, 2017

18 Online Users