+0  
 
0
232
1
avatar

Let \[f(x) = \begin{cases} x^2+9 &\text{if }x<-5, \\ 3x-8&\text{if }x\ge-5. \end{cases} \]If $f(x)=10$, find the sum of all possible values of $x$.

Guest Aug 29, 2017
 #1
avatar+91208 
+2

\( \[f(x) = \begin{cases} x^2+9 &\text{if }x<-5, \\ 3x-8&\text{if }x\ge-5. \end{cases} \]If $f(x)=10$\)

 

Find the sum of all possible values of x

 

If   x^2 +  9  = 10

Then x^2  = 1

And x  =  ± 1     .....   but for this function,  x < -5,  so neither of these are good

 

If  3x  - 8  = 10

3x  = 18

x  = 6  .......   and  x  ≥ -5

 

So....the sum of all possible values of x  =  6

 

 

 

cool cool cool

CPhill  Aug 29, 2017

15 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.