+0  
 
0
521
2
avatar+285 

Solve 

\(\frac{x^2+2x+3}{x+4}=x+5\)

for x.

 Jan 5, 2021

Best Answer 

 #1
avatar+539 
+1

If we multiply both sides by x+4,we get \(x^2+2x+3=x^2+9x+20\) which can be simplified to \(0=7x+17\)ubtract 17 from both sides and divide by 7. we get -17/7.

 Jan 5, 2021
 #1
avatar+539 
+1
Best Answer

If we multiply both sides by x+4,we get \(x^2+2x+3=x^2+9x+20\) which can be simplified to \(0=7x+17\)ubtract 17 from both sides and divide by 7. we get -17/7.

MooMooooMooM Jan 5, 2021
 #2
avatar+285 
0

Cross-multiplication gives 

\(x^2+2x+3=(x+4)(x+5)=x^2+9x+20. \)

Therefore

\(0=7x+17\)

and \(x=\boxed{-\frac{17}7}\).

 Jan 6, 2021

1 Online Users

avatar