We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
47
1
avatar

Triangle $ABC$ has vertices $A(0, 8)$, $B(2, 0)$, $C(8, 0)$. A horizontal line with equation $y=t$ intersects line segment $ \overline{AB} $ at $T$ and line segment $ \overline{AC} $ at $U$, forming $\triangle ATU$ with area 13.5. Compute $t$.

 Oct 14, 2019
 #1
avatar+104969 
+1

Triangle ABC has vertices A(0, 8), B(2, 0), C(8, 0)

 A horizontal line with equation y= t intersects line segment {AB}  at T and line segment {AC}  at U, forming triangle ATU with area 13.5. Compute t.

 

The area of the given triangle   is  (1/2)BC * height  =  (1/2)(6)(8)  = 24

 

Since TU  is parallel to BC.....then triangle  ATU  is similar to triangle ABC

 

The square of the  scale factor  * area of ABC   =  area of ATU

 

Scale factor ^2  =   area of ATU  / Area of ABC

 

Scale factor  =  √ [13.5/24]  =  3/4  

 

So.....the height of triangle ATU    = 3/4 the height of  triangle  ABC

 

So..... the line segment TU will  be located at   y  =  8 - (3/4)8  =  8 - 6  =  2   

 

See the pic below : 

 

 

Proof of ATU area    :  (1/2)*TU* height of 6 =   (1/2) 4.5 (6)  =  4.5 * 3  =  13.5

 

 

cool cool cool

 Oct 14, 2019
edited by CPhill  Oct 14, 2019

18 Online Users

avatar