If abc=13 and
(a+1b)(b+1c)(c+1a)=(1+1a)(1+1b)(1+1c),
find a+b+c.
(a+1b)(b+1c)(c+1a)=(1+1a)(1+1b)(1+1c)(ab+1b)(bc+1c)(ac+1a)=(a+1a)(b+1b)(c+1c)(ab+1)(bc+1)(ac+1)=(a+1)(b+1)(c+1)(ab2c+ab+bc+1)(ac+1)==(ab+a+b+1)(c+1)a2b2c2+ab2c+a2bc+ab+abc2+bc+ac+1=abc+ab+ac+a+bc+b+c+1a2b2c2+ab2c+a2bc+abc2=abc+a+b+ca2b2c2+abc(a+b+c)=abc+(a+b+c)|abc=13132+13(a+b+c)=13+(a+b+c)12(a+b+c)=13−13212(a+b+c)=13(1−13)12(a+b+c)=−13∗12|:12a+b+c=−13