Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
431
2
avatar

If $abc=13$ and(a+1b)(b+1c)(c+1a)=(1+1a)(1+1b)(1+1c),find $a+b+c$.

 Jun 13, 2021
 #1
avatar+26396 
+2

If abc=13 and
(a+1b)(b+1c)(c+1a)=(1+1a)(1+1b)(1+1c),
find a+b+c.

 

(a+1b)(b+1c)(c+1a)=(1+1a)(1+1b)(1+1c)(ab+1b)(bc+1c)(ac+1a)=(a+1a)(b+1b)(c+1c)(ab+1)(bc+1)(ac+1)=(a+1)(b+1)(c+1)(ab2c+ab+bc+1)(ac+1)==(ab+a+b+1)(c+1)a2b2c2+ab2c+a2bc+ab+abc2+bc+ac+1=abc+ab+ac+a+bc+b+c+1a2b2c2+ab2c+a2bc+abc2=abc+a+b+ca2b2c2+abc(a+b+c)=abc+(a+b+c)|abc=13132+13(a+b+c)=13+(a+b+c)12(a+b+c)=1313212(a+b+c)=13(113)12(a+b+c)=1312|:12a+b+c=13

 

laugh

 Jun 14, 2021
edited by heureka  Jun 14, 2021
 #2
avatar+2407 
+1

Nice. :))

 

=^._.^=

catmg  Jun 14, 2021

2 Online Users

avatar