→ → → →
a=⟨−1,−4⟩ and b =⟨3,2⟩. Represent a − b using the head-to-tail method. Complete the subtraction by the head-to-
→ →
tail method, and draw a −b.
Draw \(\vec{a}\) anywhere on the coordinate plane. The origin seems like a convenient starting point
Draw \(-\vec{b}\), the opposite of \(\vec{b}\), and connect the tail of this vector to the head of \(\vec{a}\).
Draw \(\vec{a}-\vec{b}\), the resultant vector, by starting the tail of this vector at the tail of \(\vec{a}\) and by having the head connect to the head of \(\vec{b}\).
Now, you're done!