+0

# HELPPP

+8
154
2
+258

In triangle $XYZ$, we have $\angle Z = 90^\circ$, $XY = 10$, and $YZ = \sqrt{51}$. What is $\tan X$?

Feb 8, 2022

### 2+0 Answers

#1
+516
0

Triangle XYZ is a right triangle because one of its angles is 90 degrees. XY is the hypotenuse because it is the line segment opposite the right angle. Using the pythagorean theorem, XY^2 - YZ^2 = XZ^2. 100 - 51 = 49. So XZ = 7.

Because tan (tangents) for a right triangle takes the ratio of the adjacent side to the angle to the hypotenuse, then we get the adjacent side as XZ and the hypotenuse as XY. XZ / XY = 7 / 10.

Thus, $$\tan x = {7\over10}$$

Feb 8, 2022
#2
+1696
+3

Who did give you 2 ++ for the wrong answer? Read the question again.

-------------------------------------------------------------------------------------------------

Angle Z = 90º             XY = 10            YZ = √51            XZ = 7  (correct)

XY =>  hypotenuse            YZ => opposite              XZ => adjacent

tan(X) = opposite / adjacent

tan(X) = √51 / 7

----------------------------------------------

btw...   7 / 10 = sin(Y)

civonamzuk  Feb 8, 2022
edited by Guest  Feb 8, 2022