We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
371
7
avatar+4247 

Given  \(R(-6, 19)\) and \(S(15, -5)\) , what are the coordinates of the point on segment \(\overline{RS}\) two-thirds of the distance from \(S\)\(R\) to ?

 Dec 29, 2017
 #1
avatar+101725 
+2

Divide the interval  S(15,-5)  R(-619)  in the ratio  2:1

 

\((\frac{1*15+2*-6}{3},\frac{1*-5+2*19}{3})\\ =(\frac{15-12}{3},\frac{-5+38}{3})\\ =(\frac{3}{3},\frac{33}{3})\\ =(1,11)\)

 

 

 Dec 29, 2017
 #2
avatar+4247 
0

is the answer (1,11)? If so, it's wrong...

 Dec 29, 2017
 #3
avatar+101084 
0

It's easier to find 1/3 of the distance from R to S.....so we have

 

[ -6  +  (15 - - 6)/3   , 19  +  ( -5 - 19)/ 3  ]  =

 

[ -6  + 21/3,  19  +  -24/3 ]  =

 

[ -6   + 7,  19  - 8  ]  =

 

(1, 11)

 

Same answer as Melody's  ???

 

Did you leave something out, tertre ???

 

 

cool cool cool

 Dec 29, 2017
 #4
avatar+4247 
0

Yep, I did. Sorry: Given \(R(-6,19)\) and \(S(15,-5)\), what are the coordinates of the point on segment \(\overline{RS}\)  two-thirds of the distance from \(R\) to \(S\) ?

 Dec 29, 2017
 #5
avatar+101084 
+2

OK....we have

 

[  - 6  +  (15 - - 6)(2/3),  19  + (-5 - 19)(2/3)  ]

 

[ - 6  +  (21)(2/3), 19 + (-24)(2/3) ]

 

[ - 6  + 14,  19  -  16 ]

 

(8, 3)

 

 

cool cool cool

 Dec 29, 2017
 #6
avatar+4247 
+1

Oh, ok, I get it! Thanks so much!

 Dec 29, 2017
 #7
avatar+191 
+3

We need to find two-thirds of the difference in the x values of points R and S and add this to the X value of point R . Then we will find two-thirds of the difference in the y values and add this to the y value of point R . When we solve for the x value we find that \(\frac{2}{3}\times (15-(-6))=\frac{2}{3} \times 21 = 14\) , and -6+14=8 , so x=8 . When we solve for y we find that \(\frac{2}{3} \times (-5 -19) = \frac{2}{3} \times (-24) = -16 \) , and \(19 + (-16) = 3\) , so y=3 . The coordinates are \(\boxed{(8,3)}\) .

 Dec 29, 2017

8 Online Users

avatar