+0  
 
+1
45
3
avatar+474 

What real number is equal to the expression \(2 + \frac{4}{1 + \frac{4}{2 + \frac{4}{1 + \cdots}}}\), where the 1s and the 2s alternate?

ant101  May 8, 2018
Sort: 

3+0 Answers

 #1
avatar+86613 
+5

Let  a   =  2  +   4

                       ______

                       1 +   4

                              ____

                                 ........

                          

 

So we have

 

a =   2  +       4

                  ____

                 1  + 4

                       __

                        a           simplify

 

 

 

a =   2      +    4a

                    _______

                      (a  + 4)

 

 

a   =  (2a + 8 + 4a) 

         _____________

             (a + 4)

 

 

a( a + 4)  =   6a + 8

 

a^2 + 4a   = 6a  + 8

 

a^2 - 2a  - 8   = 0

 

(a - 4) (a + 2)    = 0

 

Setting both factors to 0  and solving for   "a"  we  get   that  a  = 4  or a  = -2

 

We can reject -2 because  a  is positive

 

So......the real  number is   4

 

 

 

cool cool cool               

CPhill  May 8, 2018
 #2
avatar+474 
+2

Thank you, CPhill! laugh

ant101  May 8, 2018
 #3
avatar+2611 
+3

Solution:

So, we have \(2+\frac{4}{1+\frac{4}{2+\frac{4}{1+\cdots}}} \), which at first looks rather scary. But we notice a pattern! Because the nested fractions descend forever, the fraction essentially contains itself! So let \(a\)  equal this fraction:

\( a = 2+\frac{4}{1+\frac{4}{2+\frac{4}{1+\cdots}}} \)

Thus,

\( a = 2+\frac{4}{1+\frac{4}{a}} \)

So now, we simply need to solve for a.

\(a = 2+\frac{4}{1+\frac{4}{a}} = 2 + \frac{4}{\frac{4+a}{a}}= 2+\frac{4a}{4+a}=\frac{8+2a+4a}{4+a}=\frac{8+6a}{4+a}\)


Getting rid of the fraction by multiplying y \(4+a\), we get

\(4a + a^2 = 8 + 6a \Longrightarrow a^2 - 2a - 8 = 0\)



So now we factor...

\(a^2 - 4a + 2a - 8 = 0\)

\(a(a-4)+2(a-4) = 0\)

\((a+2)(a-4) = 0\)  





So \(a\) can be \(-2\) or \(4\). Since we know, by looking at the fraction, that \(a\)  must be positive, \(a\), and the value of the fraction, must be \(\boxed{4}\).

 

Tell me if you have any questions,

smileysmiley

tertre  May 8, 2018

7 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy