+0  
 
0
1120
4
avatar

What is a30 for the arithmetic sequence presented in the table below?
 

n     6    11

an   50  35



Hint: an = a1 + d(n − 1), where a1 is the first term and d is the common difference.

 

 a30 = −42

 a30 = −38

 a30 = −28

 a30 = −22

 Feb 28, 2016
 #1
avatar
0

a(30) = 65-3 (30-1), solve for a(30)

a(30) = -22

 Feb 28, 2016
 #2
avatar+129845 
+5

50 = a1 +  d(5)       →  50  = a1 +    5d    (1)

35 = a1 + d(10)      →  35  = a1  + 10d     (2)

 

Subtract (2)  from (1)

 

15  =  -5d      divide both sides by -5

 

-3 = d

 

And....solving for a1, we have

 

50  = a1 - 3(5)

 

50 = a1 - 15

 

65  = a1

 

So

a30  = 65  -3(29)  =   -22

 

 

 

cool cool cool

 Feb 28, 2016
 #3
avatar
0

an = a1 + d(n − 1)

50 =a1 + -3(6 - 1) solve for a1

a1=65

a30=65 + -3(30 - 1)

a30=-22

 Feb 28, 2016
 #4
avatar+26387 
0

What is \(a_{30}\)

 

\(\small{ \boxed{~ \text{arithmetric sequence: }\quad a_k = a_i \frac{j-k}{j-i} + a_j\frac{k-i}{j-i} ~} }\\ \small{ \boxed{~ \text{geometric sequence: } \quad a_k = a_i^{ \frac{j-k}{j-i} }\cdot a_j^{ \frac{k-i}{j-i} } ~} }\)

 

 

 

\(a_6 = a_i = 50 \qquad i = 6\\ a_{11}= a_j =35 \qquad j = 11\\ a_{30}= a_k = \ ? \qquad k = 30\)

 

 

 

\(a_{30} = 50 \cdot ( \frac{11-30}{11-6} )+35\cdot ( \frac{30-6}{11-6} ) \\ a_{30}=50 \cdot ( \frac{-19}{5} ) +35\cdot ( \frac{24}{5} ) \\ a_{30}=-19\cdot 10 + 7 \cdot 24\\ a_{30}=-190+168\\ a_{30}=-22\)

 

laugh

 Feb 28, 2016

4 Online Users

avatar