In the diagram below, we have ST = 2*TR + 5 and PQ = SR = 30. Find the length UV.
Find the length UV.
Hello Guest!
The length of the diagram \(\overline{QR}\) is a.
\(\overline{ST}=2\cdot \overline{TR}+5\\ \overline{ST}+\overline{TR}=30\\ 2\cdot \overline{TR}+5+\overline{TR}=30\\ \overline{TR}=\frac{25}{3}\)
\(f(x)= -\frac{30-\frac{25}{3}}{a}\cdot x+30 =-\frac{65}{3a}\cdot x+30\\ g(x)= \frac{30}{a}\cdot x \\ f(x)=g(x)\\-\frac{65}{3a}\cdot x+30 = \frac{90}{3a}\cdot x\\ \frac{155}{3a}\cdot x=30\\ x=\frac{90a}{155}=\frac{18a}{31}\)
\(g(\frac{18a}{31})=\overline{UV}=\frac{30}{a}\cdot\frac{18a}{31}=17.42\)
\( The\ length\ \overline{UV}\ is\ 17.42\)
!