+0  
 
0
580
1
avatar+4 

Hey guys, any help with this is much appreciated! cool

 

A) Find the critical number(s) of h(x)=sin(x)+cos(x)

 

B) Find the local minimum(s) and maximum(s) of h(x)

 

C) Does h(x) have any global minimum(s) or maximum(s)? If so, where?

 Mar 27, 2016
 #1
avatar+130511 
0

h(x)=sin(x)+cos(x)     find the derivative and set it to 0

 

h' (x)   =  cosx - sinx  = 0        add sin x to both sides

 

cosx   = sinx     

 

The critical numbers occur at  45° + n360°    

and at   225° + n360°     where n is an integer

 

Taking the second derivative, we have

 

-sinx - cosx ......  and subbing 45°  into this produces a negative.......so this indicates a max at 45° + n360°

 

Likewise   subbing 225°  into the second derivative produces a positive value......so this indicates a minimum at 225° + n360° 

 

These points are both local and global maxes and mins since we are not restricted to any particular interval

 

Here's a graph:  https://www.desmos.com/calculator/cnytd7bpfn

 

 

 

cool cool cool

 Mar 27, 2016

0 Online Users