$$\\9^x=(19*10^6)/ 26\\\\
9^x=19/26*10^6\\\\
log(9^x)=log(19/26*10^6)\\\\
xlog(9)=log(19/26)+log(10^6)\\\\
x=\frac{log(19/26)+6}{log(9)}\\\\$$
$${\frac{\left({log}_{10}\left({\frac{{\mathtt{19}}}{{\mathtt{26}}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{6}}\right)}{{log}_{10}\left({\mathtt{9}}\right)}} = {\mathtt{6.144\: \!958\: \!115\: \!969\: \!216\: \!2}}$$
.$$\\9^x=(19*10^6)/ 26\\\\
9^x=19/26*10^6\\\\
log(9^x)=log(19/26*10^6)\\\\
xlog(9)=log(19/26)+log(10^6)\\\\
x=\frac{log(19/26)+6}{log(9)}\\\\$$
$${\frac{\left({log}_{10}\left({\frac{{\mathtt{19}}}{{\mathtt{26}}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{6}}\right)}{{log}_{10}\left({\mathtt{9}}\right)}} = {\mathtt{6.144\: \!958\: \!115\: \!969\: \!216\: \!2}}$$