Suppose that $\frac{\log_3 2}{\log_2 9} \cdot \frac{\log_3 4}{\log_2 27} \cdot \frac{\log_3 8}{\log_2 81} \cdots \frac{\log_3 2^{100}}{\log_2 3^{101}} = \frac{(\log_3 2)^m}{n}$, where $m$ and $n$ are integers. Find $m+n$.
Might as well make this easier for others to read.
Suppose that \(\frac{\log_3 2}{\log_2 9} \cdot \frac{\log_3 4}{\log_2 27} \cdot \frac{\log_3 8}{\log_2 81} \cdots \frac{\log_3 2^{100}}{\log_2 3^{101}} = \frac{(\log_3 2)^m}{n}\), where m and n are integers. Find m+n.