+0  
 
0
323
2
avatar

Hi - what is the best way to solve simultaneous equations where one is quadratic and the other linear? For example:

y=x+3

y=x2+3x

 

Thank you

Guest Apr 11, 2017
 #1
avatar+20025 
+2

Hi - what is the best way to solve simultaneous equations where one is quadratic and the other linear?

For example:

y=x+3

y=x2+3x

 

1. Formula line ( linear equation)

\(y_{\text{line}}=m\cdot x_{\text{line}}+b \)

 

2. Formula parabola (quadatic equation)

\(y_{\text{parabola}}=A\cdot x_{\text{parabola}}^2+B\cdot x_{\text{parabola}} + C \)

 

3. set equal  \(y_{\text{line}}=y_{\text{parabola}}=y_{\text{intersection}}\) :

\(\begin{array}{|rcll|} \hline m\cdot x_{\text{intersection}}+b &=& A\cdot x_{\text{intersection}}^2+B\cdot x_{\text{intersection}} + C \\\\ Ax_{\text{intersection}}^2+x_{\text{intersection}}(B-m)+C-b &=& 0 \\ x_{\text{intersection}_{1,2}} &=& \dfrac{m-B\pm \sqrt{(m-B)^2-4\cdot A \cdot(C-b)} }{2A} \\ y_{\text{intersection}_{1,2}} &=& m\cdot x_{\text{intersection}_{1,2}} + b \\ \hline \end{array} \)

 

4. Example:

\(\begin{array}{|rcll|} \hline y &=& x + 3 \quad & \quad m=1 \quad b = 3 \\ y &=& x^2+3x \quad & \quad A=1 \quad B = 3 \quad C = 0 \\ x_{\text{intersection}_{1,2}} &=& \dfrac{1-3\pm \sqrt{(1-3)^2-4\cdot 1 \cdot(0-3)} }{2\cdot 1} \\ x_{\text{intersection}_{1,2}} &=& \dfrac{-2\pm \sqrt{4+12} }{2} \\ x_{\text{intersection}_{1,2}} &=& \dfrac{-2\pm 4 }{2} \\ x_{\text{intersection}_{1}} &=& \dfrac{-2 + 4 }{2} \\ &=& 1 \\\\ x_{\text{intersection}_{2}} &=& \dfrac{-2 - 4 }{2} \\ &=& -3 \\\\ y_{\text{intersection}_{1}} &=& 1\cdot x_{\text{intersection}_{1}} + 3 \\ &=& 1\cdot 1 + 3 \\ &=& 4 \\\\ y_{\text{intersection}_{2}} &=& 1\cdot x_{\text{intersection}_{2}} + 3 \\ &=& 1\cdot (-3) + 3 \\ &=& 0 \\ \hline \end{array}\)

 

laugh

heureka  Apr 11, 2017
 #2
avatar+89953 
+1

 

Just set the equations equal......so we have...

 

x^2 + 3x   = x + 3           subtract  x + 3 from both sides

 

x^2 + 2x - 3   = 0           factor

 

(x + 3) ( x - 1)  = 0

 

Set both factors = 0   and solve for x........so

 

x = -3           and      x = 1 

 

And when x = -3, y = -3 + 3  = 0

 

And when x = 1, y = 1 + 3  = 4

 

So......the intersection points are   ( -3, 0)   and   ( 1, 4)

 

 

 

cool cool cool

CPhill  Apr 11, 2017

17 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.