+0  
 
0
58
1
avatar

The circle c has equation  x^2 + y^2 = 1. The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.

Guest Jul 27, 2017
Sort: 

1+0 Answers

 #1
avatar+4152 
0

If the line's slope is  3  and y-intercept is  1 , the slope-intercept form of the line is:

y  =  3x + 1

 

And the equation for the circle is:

x2 + y2  =  1                        We want to find what x is when y = 3x + 1. So substitute 3x + 1 in for y.

x2 + (3x + 1)2  =  1

x2 + (3x +1)(3x + 1)  =  1

x2 + 9x2 + 6x + 1  =  1

10x2 + 6x  =  0                   Factor out an  x  from both terms.

x(10x + 6)  =  0                   Set each factor equal to zero and solve for  x .

 

x  =  0       or       x  =  -3/5

 

Now we can plug these  x  values into the equation of the line to find the  y  coordinate of the intersection points.

 

When  x  =  0 ,                       When  x  =  -3/5 ,

y  =  3(0) + 1                           y  =  3(-3/5) + 1

y  =  1                                     y  =  -4/5

 

So...the coordinates of the two points are:    (0, 1)   and   (-3/5, -4/5)

 

Here's a graph: https://www.desmos.com/calculator/0x0hcauvxk

hectictar  Jul 27, 2017

7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details