+0  
 
0
683
1
avatar

how could i siplify with steps? (-1-x^2)/((1+x*y)^2+(x-y)^2)

 May 29, 2014

Best Answer 

 #1
avatar+33661 
+5

$$$$\frac{-1-x^2}{(1+x*y)^2+(x-y)^2}$$\\
Expand the denominator $$(1+x*y)^2+(x-y)^2=1+2x*y+x^2*y^2+x^2-2x*y+y^2$$\\
Collect terms in the denominator
$$1+x^2+y^2+x^2*y^2 = 1+x^2+y^2*(1+x^2)=(1+x^2)*(1+y^2)$$\\
The original numerator can be written as $$-(1+x^2)$$\\
Putting the numerator and denominator together again we have
$$\frac{-(1+x^2)}{(1+x^2)*(1+y^2)}= \frac{-1}{1+y^2}$$

.
 May 29, 2014
 #1
avatar+33661 
+5
Best Answer

$$$$\frac{-1-x^2}{(1+x*y)^2+(x-y)^2}$$\\
Expand the denominator $$(1+x*y)^2+(x-y)^2=1+2x*y+x^2*y^2+x^2-2x*y+y^2$$\\
Collect terms in the denominator
$$1+x^2+y^2+x^2*y^2 = 1+x^2+y^2*(1+x^2)=(1+x^2)*(1+y^2)$$\\
The original numerator can be written as $$-(1+x^2)$$\\
Putting the numerator and denominator together again we have
$$\frac{-(1+x^2)}{(1+x^2)*(1+y^2)}= \frac{-1}{1+y^2}$$

Alan May 29, 2014

4 Online Users

avatar
avatar
avatar