{x=(-(((sqrt(3)*i)/2))-((1/2)))*((sqrt(4*xlnx^3-((12*(abs(e))^(2*x))*xlnx^2)+(12*(abs(e))^(4*x))*xlnx-(4*(abs(e))^(6*x))+27)/(2*3^((3/2))))-(((-(2*xlnx^3)+(6*(abs(e))^(2*x))*xlnx^2-((6*(abs(e))^(4*x))*xlnx)+2*(abs(e))^(6*x)-27)/54)))^((1/3))+(((((sqrt(3)*i)/2)-((1/2)))*((xlnx^2)-((2*(abs(e))^(2*x))*xlnx)+((abs(e))^(4*x))))/(9*((sqrt(4*xlnx^3-((12*(abs(e))^(2*x))*xlnx^2)+(12*(abs(e))^(4*x))*xlnx-(4*(abs(e))^(6*x))+27)/(2*3^((3/2))))-(((-(2*xlnx^3)+(6*(abs(e))^(2*x))*xlnx^2-((6*(abs(e))^(4*x))*xlnx)+2*(abs(e))^(6*x)-27)/54)))^((1/3))))-(((((abs(e))^(2*x))-xlnx)/3)), x=(((sqrt(3)*i)/2)-((1/2)))*((sqrt(4*xlnx^3-((12*(abs(e))^(2*x))*xlnx^2)+(12*(abs(e))^(4*x))*xlnx-(4*(abs(e))^(6*x))+27)/(2*3^((3/2))))-(((-(2*xlnx^3)+(6*(abs(e))^(2*x))*xlnx^2-((6*(abs(e))^(4*x))*xlnx)+2*(abs(e))^(6*x)-27)/54)))^((1/3))+(((-(((sqrt(3)*i)/2))-((1/2)))*((xlnx^2)-((2*(abs(e))^(2*x))*xlnx)+((abs(e))^(4*x))))/(9*((sqrt(4*xlnx^3-((12*(abs(e))^(2*x))*xlnx^2)+(12*(abs(e))^(4*x))*xlnx-(4*(abs(e))^(6*x))+27)/(2*3^((3/2))))-(((-(2*xlnx^3)+(6*(abs(e))^(2*x))*xlnx^2-((6*(abs(e))^(4*x))*xlnx)+2*(abs(e))^(6*x)-27)/54)))^((1/3))))-(((((abs(e))^(2*x))-xlnx)/3)), x=(((sqrt(4*xlnx^3-((12*(abs(e))^(2*x))*xlnx^2)+(12*(abs(e))^(4*x))*xlnx-(4*(abs(e))^(6*x))+27)/(2*3^((3/2))))-(((-(2*xlnx^3)+(6*(abs(e))^(2*x))*xlnx^2-((6*(abs(e))^(4*x))*xlnx)+2*(abs(e))^(6*x)-27)/54)))^((1/3)))+(((xlnx^2)-((2*(abs(e))^(2*x))*xlnx)+((abs(e))^(4*x)))/(9*((sqrt(4*xlnx^3-((12*(abs(e))^(2*x))*xlnx^2)+(12*(abs(e))^(4*x))*xlnx-(4*(abs(e))^(6*x))+27)/(2*3^((3/2))))-(((-(2*xlnx^3)+(6*(abs(e))^(2*x))*xlnx^2-((6*(abs(e))^(4*x))*xlnx)+2*(abs(e))^(6*x)-27)/54)))^((1/3))))-(((((abs(e))^(2*x))-xlnx)/3))} is the answer
(x)=xlnx-e^2^x+x^-2
This ca re-written like this:
x+e^(2^x) = 1/x^2+x log(x)
x = 0.458076114665514...
(x)=xlnx-e^2^x+x^-2
\(x=xlnx-(e^2)^x+x^{-2}\\\\ x=xlnx-e^{2x}+\frac{1}{x^{2}}\\\\ \)
Here is a graphical solution
https://www.desmos.com/calculator/g5xyac7btt
It shows that x=0.52, y=0.52 is the approximate solution.
One of the problems here is that I do not know what you mean by e^2^x
There is an order of operation definition but I can never remember what it is and it may not be what you mean anyway.
Do you mean
\((e^2)^x\;\;\;or\;\;\;e^{2^x}\)
they are different. :)
Here is a graphical solution to the other interpretation
https://www.desmos.com/calculator/jfh1wedmr4
The approximate solution is here x=0.458, y=0.458