how do I find the derivative of f(x)=1.2x^3-2^1.5x+√2
I don't understand how 1.2x^3 turns into 3.6x2
$$\\ f(x)=1.2x^3-2^{1.5}x+\sqrt2\\\\ f'(x)=3*1.2x^2-2^{1.5}\\\\ f'(x)=3.6x^2-2\sqrt2\\\\$$
NOTE:
$$\\y=ax^n\qquad then\qquad y'=n*a*x^{n-1}\\\\ so\;if\; y=1.2x^3\qquad then\qquad y'=3*1.2*x^{2}=3.6x^2\\\\$$