How Do I Find The Solutions For The Quadratic Equation : X^2-2x-8 =0 Step By Step
The Quadratic Equation: $$x^2-2x-8=0$$
The solution for $$x^2+px+q=0$$ is:
$$x_{1,2}=-\frac{p}{2}\pm\sqrt{\frac{p^2}{4}-q}$$
here: $$p=-2$$ and $$q=-8$$
therefor: $$x_{1,2}=-\frac{-2}{2}\pm\sqrt{\frac{(-2)^2}{4}-(-8)}$$
$$x_{1,2}=1\pm\sqrt{\frac{4}{4}+8}$$
$$x_{1,2}=1\pm\sqrt{1+8}$$
$$x_{1,2}=1\pm\sqrt{9}$$
$$x_{1,2}=1\pm3$$
$$x_1=1+3=4$$
$$x_2=1-3=-2$$
$$\text{so}\quad x_1=4 \quad \text{and} \quad x_2=-2$$
Bye
You could solve it using the quadratic formula.
https://www.youtube.com/watch?v=O8ezDEk3qCg
but it is easy enough to do by factorising.
$$x^2-2x-8=0$$
You need to find two numbers that multiply to give -8 (straight away you know that one is neg and one is pos)
and they have to add to -2 (so the bigger looking one is neg)
-4 and 2 That was easy.
$$(x-4)(x+2)=0$$
Now, if you are happy you can give me a thumbs up. I would like that!
Now, if 2 things are going to multiply to give 0 then one (or both) of them must be zero.
so x-4=0 or x+2=0
x=4 or x=-2
The Quadratic Equation: $$x^2-2x-8=0$$
The solution for $$x^2+px+q=0$$ is:
$$x_{1,2}=-\frac{p}{2}\pm\sqrt{\frac{p^2}{4}-q}$$
here: $$p=-2$$ and $$q=-8$$
therefor: $$x_{1,2}=-\frac{-2}{2}\pm\sqrt{\frac{(-2)^2}{4}-(-8)}$$
$$x_{1,2}=1\pm\sqrt{\frac{4}{4}+8}$$
$$x_{1,2}=1\pm\sqrt{1+8}$$
$$x_{1,2}=1\pm\sqrt{9}$$
$$x_{1,2}=1\pm3$$
$$x_1=1+3=4$$
$$x_2=1-3=-2$$
$$\text{so}\quad x_1=4 \quad \text{and} \quad x_2=-2$$
Bye