+0  
 
0
627
3
avatar

How do I find the x-intercepts of -x^6+7x^4+3x^2, without using Desmos/computer software?

 

I$${f}{\left({\mathtt{x}}\right)} = {\mathtt{\,-\,}}{{\mathtt{x}}}^{{\mathtt{6}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{4}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}$$

 Feb 21, 2015

Best Answer 

 #3
avatar+23254 
+5

First, factor out -x2, giving you -x2(x4 - 7x2 + 3)

So, one intercept occurs when -x2 = 0, so x = 0.

Now, it would be nice if (x4 - 7x2 + 3) factors, but it doesn't, so use the quadratic formula with the change that the quadratic formula gives you values for x2, not x:

x2  =  [7 ± √( (-7)2 - 4·1·3)] / [2·1]   --->   x2  =  [7 ± √( 37)] / [2]

You will need to take the ± square roots of that answer.

Now, these x-values will be:  + √( [7 + √( 37)] / 2 )

                                              - √( [7 + √( 37)] / 2 )

                                              + √( [7 - √( 37)] / 2 )

                                              - √( [7 - √( 37)] / 2 )

 Feb 21, 2015
 #1
avatar
0

Arent u supposed to fucking combine like terms first?

 Feb 21, 2015
 #2
avatar
0

Lollololol

 Feb 21, 2015
 #3
avatar+23254 
+5
Best Answer

First, factor out -x2, giving you -x2(x4 - 7x2 + 3)

So, one intercept occurs when -x2 = 0, so x = 0.

Now, it would be nice if (x4 - 7x2 + 3) factors, but it doesn't, so use the quadratic formula with the change that the quadratic formula gives you values for x2, not x:

x2  =  [7 ± √( (-7)2 - 4·1·3)] / [2·1]   --->   x2  =  [7 ± √( 37)] / [2]

You will need to take the ± square roots of that answer.

Now, these x-values will be:  + √( [7 + √( 37)] / 2 )

                                              - √( [7 + √( 37)] / 2 )

                                              + √( [7 - √( 37)] / 2 )

                                              - √( [7 - √( 37)] / 2 )

geno3141 Feb 21, 2015

0 Online Users