+0  
 
0
549
3
avatar

How do I solve 2289 * .0178/1-(1+.0178)^-48

 Dec 9, 2014

Best Answer 

 #3
avatar+118723 
+5

$${\frac{{\mathtt{2\,289}}{\mathtt{\,\times\,}}{\mathtt{0.017\: \!8}}}{{\mathtt{1}}}}{\mathtt{\,-\,}}{\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.017\: \!8}}\right)}^{-{\mathtt{48}}} = {\mathtt{40.315\: \!451\: \!546\: \!833\: \!992\: \!7}}$$

 

That is what the calc on the home page says  ;)

 Dec 9, 2014
 #1
avatar
+5

You start by putting some more brackets in the expression so there can be no doubt what you intend.

 Dec 9, 2014
 #2
avatar
0

The calculator on the home page says (1.0178)^48 = 2.3323699307034225

so you can just substitute this value in your expression.

 

Evaluate that power this way:

1.0178

x^y button

48

=

 Dec 9, 2014
 #3
avatar+118723 
+5
Best Answer

$${\frac{{\mathtt{2\,289}}{\mathtt{\,\times\,}}{\mathtt{0.017\: \!8}}}{{\mathtt{1}}}}{\mathtt{\,-\,}}{\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.017\: \!8}}\right)}^{-{\mathtt{48}}} = {\mathtt{40.315\: \!451\: \!546\: \!833\: \!992\: \!7}}$$

 

That is what the calc on the home page says  ;)

Melody Dec 9, 2014

0 Online Users