2^(3x-2)=3^(2x-1) take the log of both sides
log 2^ (3x - 2) = log 3^(3x - 1) and we can write
(3x - 2) log 2 = (3x - 1) log 3 simplify
3x* log 2 - 2 log 2 = 3x log 3 - log 3 rearrange as
3log 2 * x - 3 log 3 * x = 2log 2 - log 3 implify the left side
x [ 3 log 2 - 3 log 3 ] = 2 log 2 - log 3 divide both sides by [ 3 log 2 - 3 log 3 ]
x = [ 2 log 2 - log 3 [ / [3 log 2 - 3 log 3 ] ≈ -0.2365