+0  
 
0
302
1
avatar

How do i solve the equation 2^(3x-2)=3^(2x-1)

Guest Apr 1, 2017
Sort: 

1+0 Answers

 #1
avatar+76806 
+1

2^(3x-2)=3^(2x-1)      take the log of both sides

 

log 2^ (3x - 2)  =  log 3^(3x - 1)   and we can write

 

(3x - 2) log 2  =  (3x - 1) log 3  simplify

 

3x* log 2  - 2 log 2  =  3x log 3  - log 3   rearrange as

 

3log 2 * x - 3 log 3 * x   =  2log 2 - log 3       implify the left side

 

x [ 3 log 2  - 3 log 3 ]   = 2 log 2 - log 3       divide both sides by  [ 3 log 2  - 3 log 3 ]

 

x = [ 2 log 2 -  log 3 [ / [3 log 2 - 3 log 3 ]   ≈ -0.2365

 

 

 

cool cool cool

CPhill  Apr 1, 2017
edited by CPhill  Apr 1, 2017

18 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details