how do i solve this?
$${\frac{\left({\mathtt{5\,000}}{\mathtt{\,\times\,}}{\mathtt{1.043}}{\mathtt{\,\times\,}}\left({\left({\mathtt{1.043}}\right)}^{{\mathtt{n}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)\right)}{\left({\mathtt{1.043}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}}$$>65000,n
what is n=??
Simplifying, we have
(1.043^n - 1) > 65000 (1.043-1)/(5000*1.043)
1.043^n - 1 > 65000(.043) / (5215)
1.043^n > 2795/5215 +1
1.043^n > 1.535953978906999 take the log of both sides
log 1.043^n > log 1.535953978906999 and by a property of logs, we can write
(n)log 1.043 > log 1.535953978906999 divide both sides by log 1.043
n > log 1.535953978906999 / log 1.043
n > 10.193341688070085987
Simplifying, we have
(1.043^n - 1) > 65000 (1.043-1)/(5000*1.043)
1.043^n - 1 > 65000(.043) / (5215)
1.043^n > 2795/5215 +1
1.043^n > 1.535953978906999 take the log of both sides
log 1.043^n > log 1.535953978906999 and by a property of logs, we can write
(n)log 1.043 > log 1.535953978906999 divide both sides by log 1.043
n > log 1.535953978906999 / log 1.043
n > 10.193341688070085987