+0  
 
0
677
1
avatar

how do i solve this? 

$${\frac{\left({\mathtt{5\,000}}{\mathtt{\,\times\,}}{\mathtt{1.043}}{\mathtt{\,\times\,}}\left({\left({\mathtt{1.043}}\right)}^{{\mathtt{n}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)\right)}{\left({\mathtt{1.043}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}}$$>65000,n

what is n=??

 Jun 11, 2014

Best Answer 

 #1
avatar+130511 
+5

Simplifying, we have

(1.043^n - 1)  >  65000 (1.043-1)/(5000*1.043)

1.043^n - 1 > 65000(.043) / (5215)

1.043^n >  2795/5215 +1

1.043^n > 1.535953978906999    take the log of both sides

log 1.043^n > log 1.535953978906999          and by a property of logs, we can write

(n)log 1.043 > log 1.535953978906999          divide both sides by log 1.043

n > log 1.535953978906999 / log 1.043

n > 10.193341688070085987

 Jun 11, 2014
 #1
avatar+130511 
+5
Best Answer

Simplifying, we have

(1.043^n - 1)  >  65000 (1.043-1)/(5000*1.043)

1.043^n - 1 > 65000(.043) / (5215)

1.043^n >  2795/5215 +1

1.043^n > 1.535953978906999    take the log of both sides

log 1.043^n > log 1.535953978906999          and by a property of logs, we can write

(n)log 1.043 > log 1.535953978906999          divide both sides by log 1.043

n > log 1.535953978906999 / log 1.043

n > 10.193341688070085987

CPhill Jun 11, 2014

0 Online Users