+0  
 
0
700
1
avatar

Colby is practicing his basketball shots. He knows that he has a 0.7 chance of making

each 2-point shot and a 0.4 chance of making each 3-point shot. If he takes five 2-point

and five 3-point shots, what is his probability of earning 20 points or more? Express your

answer as a decimal to the nearest thousandth.

 Jan 18, 2015

Best Answer 

 #1
avatar+118724 
+5

This is a messy one 

P(3)=0.4      P(not3)=0.6

seperately

P(2)=0.7     P(not2)=0.3

 

Now lets see what will work     

5(3s)+5(2s)=15+10=25 points  

5(3s)+4(2s)=15+8=23 points

5(3s)+3(2s)=15+6=21 points

5(3s)+2(2s)=15+4=19 points    TOO FEW

4(3s)+5(2s)=12+10=22 points

4(3s)+4(2s)=12+8=20 points

3(3s)+5(2s)=9+10=19 points    TOO FEW

---------------

P(3)=0.4      P(not3)=0.6      seperately       P(2)=0.7     P(not2)=0.3

 

P[5(3s)+5(2s)]= $${{\mathtt{0.4}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{0.7}}}^{{\mathtt{5}}}$$

 

P[5(3s)+4(2s)]

=$$0.4^5 * 5C4*0.7^4*0.3^1$$ $$=0.4^5 * 5* 0.7^4*0.3=0.4^5*1.5*0.7^4$$

 

P[5(3s)+3(2s)]

=$$0.4^5* 5C3*0.7^3*0.3^2=0.4^5*10*0.7^3*0.3^2$$  

 

P[4(3s)+5(2s)]

$$=5C4*0.4^4*0.6\;\;*\;\;0.7^5$$

 

P[4(3s)+4(2s)]

 $$=5C4*0.4^4*0.6\;\;*\;\;5C4*0.7^4*0.3=5*0.4^4*0.6\;\;*\;\;5*0.7^4*0.3$$

 

Now add all  the separate probablilies together for a final answer.

 

$${{\mathtt{0.4}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{0.7}}}^{{\mathtt{5}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{0.4}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{\mathtt{1.5}}{\mathtt{\,\times\,}}{{\mathtt{0.7}}}^{{\mathtt{4}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{0.4}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{{\mathtt{0.7}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{0.4}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{0.4}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\mathtt{0.6}}{\mathtt{\,\times\,}}{{\mathtt{0.7}}}^{{\mathtt{5}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{0.4}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\mathtt{0.6}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{0.7}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\mathtt{0.3}} = {\mathtt{0.051\: \!595\: \!980\: \!8}}$$

 

Now if I did not make any careless mistakes that should be the answer.    

 Jan 18, 2015
 #1
avatar+118724 
+5
Best Answer

This is a messy one 

P(3)=0.4      P(not3)=0.6

seperately

P(2)=0.7     P(not2)=0.3

 

Now lets see what will work     

5(3s)+5(2s)=15+10=25 points  

5(3s)+4(2s)=15+8=23 points

5(3s)+3(2s)=15+6=21 points

5(3s)+2(2s)=15+4=19 points    TOO FEW

4(3s)+5(2s)=12+10=22 points

4(3s)+4(2s)=12+8=20 points

3(3s)+5(2s)=9+10=19 points    TOO FEW

---------------

P(3)=0.4      P(not3)=0.6      seperately       P(2)=0.7     P(not2)=0.3

 

P[5(3s)+5(2s)]= $${{\mathtt{0.4}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{0.7}}}^{{\mathtt{5}}}$$

 

P[5(3s)+4(2s)]

=$$0.4^5 * 5C4*0.7^4*0.3^1$$ $$=0.4^5 * 5* 0.7^4*0.3=0.4^5*1.5*0.7^4$$

 

P[5(3s)+3(2s)]

=$$0.4^5* 5C3*0.7^3*0.3^2=0.4^5*10*0.7^3*0.3^2$$  

 

P[4(3s)+5(2s)]

$$=5C4*0.4^4*0.6\;\;*\;\;0.7^5$$

 

P[4(3s)+4(2s)]

 $$=5C4*0.4^4*0.6\;\;*\;\;5C4*0.7^4*0.3=5*0.4^4*0.6\;\;*\;\;5*0.7^4*0.3$$

 

Now add all  the separate probablilies together for a final answer.

 

$${{\mathtt{0.4}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{{\mathtt{0.7}}}^{{\mathtt{5}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{0.4}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{\mathtt{1.5}}{\mathtt{\,\times\,}}{{\mathtt{0.7}}}^{{\mathtt{4}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{0.4}}}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{\mathtt{10}}{\mathtt{\,\times\,}}{{\mathtt{0.7}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{0.4}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{0.4}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\mathtt{0.6}}{\mathtt{\,\times\,}}{{\mathtt{0.7}}}^{{\mathtt{5}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{0.4}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\mathtt{0.6}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{0.7}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\mathtt{0.3}} = {\mathtt{0.051\: \!595\: \!980\: \!8}}$$

 

Now if I did not make any careless mistakes that should be the answer.    

Melody Jan 18, 2015

0 Online Users