How do you convert Joules to Hertz ?
$$\small{\text{
Energy, E:\quad
$
\boxed{E = h\nu} \quad
$
Planck constant
$
h = 4.135667516\cdot 10^{-15}\ eV\cdot s, \quad
$
frequency
$ \nu $ in Hz $(s^{-1})$
}}\\
\boxed{1\ \mathrm{eV} = 1{,}602 \, 176 \, 565 \cdot 10^{-19}~\mathrm {J} }$$
$$\small{\text{
Herz to Joules:
}}\\
\small{\text{
We have 50000 Hz:
}}\\
\small{\text{
$
50000 Hz\ *\ 4.13566733 \cdot 10^{-15}\ eV s\ *\ 1.6021765 \cdot 10^{-19} \frac{J}{eV}= 3.3130345 \cdot 10^{-29} J
$
}}$$
$$\small{\text{
Joules to Herz:
}}\\
\small{\text{
We have $3.3130345 \cdot 10^{-29} J $:
}}\\\\
\small{\text{
$
\dfrac{3.3130345 \cdot 10^{-29} J}{ 4.13566733 \cdot 10^{-15}\ eV s\ *\ 1.6021765 \cdot 10^{-19} \frac{J}{eV} }= 50000 Hz$
}}$$
How do you convert Joules to Hertz ?
$$\small{\text{
Energy, E:\quad
$
\boxed{E = h\nu} \quad
$
Planck constant
$
h = 4.135667516\cdot 10^{-15}\ eV\cdot s, \quad
$
frequency
$ \nu $ in Hz $(s^{-1})$
}}\\
\boxed{1\ \mathrm{eV} = 1{,}602 \, 176 \, 565 \cdot 10^{-19}~\mathrm {J} }$$
$$\small{\text{
Herz to Joules:
}}\\
\small{\text{
We have 50000 Hz:
}}\\
\small{\text{
$
50000 Hz\ *\ 4.13566733 \cdot 10^{-15}\ eV s\ *\ 1.6021765 \cdot 10^{-19} \frac{J}{eV}= 3.3130345 \cdot 10^{-29} J
$
}}$$
$$\small{\text{
Joules to Herz:
}}\\
\small{\text{
We have $3.3130345 \cdot 10^{-29} J $:
}}\\\\
\small{\text{
$
\dfrac{3.3130345 \cdot 10^{-29} J}{ 4.13566733 \cdot 10^{-15}\ eV s\ *\ 1.6021765 \cdot 10^{-19} \frac{J}{eV} }= 50000 Hz$
}}$$