ParametricPlot[{If[Sin[t/2] < 0, I, 1] ((8746/39 - (17 Sin[69/44 - 6 t])/24 + (5249 Sin[52/33 + t])/34 + (370 Sin[51/32 + 2 t])/27 + (205 Sin[41/26 + 3 t])/18 + (32 Sin[28/17 + 4 t])/29 + (136 Sin[45/28 + 5 t])/37 + (29 Sin[75/47 + 7 t])/11 + (31 Sin[134/29 + 8 t])/46 + (16 Sin[43/27 + 9 t])/11 + (2 Sin[115/26 + 10 t])/19 + (37 Sin[18/11 + 11 t])/36 + (7 Sin[149/85 + 12 t])/29) UnitStep[115 Pi - t] UnitStep[-111 Pi + t] + (1266/41 - (15 Sin[11/30 - 98 t])/23 - (89 Sin[19/16 - 93 t])/42 - (3 Sin[32/39 - 90 t])/28 - (227 Sin[71/61 - 89 t])/106 - (83 Sin[38/35 - 83 t])/58 - (47 Sin[81/52 - 82 t])/37 - (111 Sin[41/31 - 80 t])/34 - (22 Sin[22/25 - 79 t])/25 - (91 Sin[52/35 - 74 t])/44 - (25 Sin[25/17 - 71 t])/29 - (577 Sin[74/59 - 70 t])/173 - (53 Sin[63/41 - 68 t])/26 - (37 Sin[71/46 - 66 t])/20 - (39 Sin[41/29 - 63 t])/35 - (25 Sin[11/21 - 58 t])/58 - (77 Sin[15/11 - 57 t])/24 - (41 Sin[54/35 - 51 t])/50 - (125 Sin[32/27 - 47 t])/77 - (74 Sin[26/21 - 38 t])/59 - (47 Sin[25/17 - 26 t])/32