$$\\LHS
=\frac{( ((-5x-3)/(2x-1))-3 )}{( 2((-5x-3)/(2x-1)) + 5)}\\\\
=\left(\frac{(-5x-3)}{(2x-1)}-3 \right )\div \left( 2\times\frac{(-5x-3)}{(2x-1)} + 5\right)\\\\
=\left(\frac{(-5x-3)-3(2x-1)}{(2x-1)} \right )\div \left(\frac{2(-5x-3)+5(2x-1)}{(2x-1)} \right)\\\\
=\left(\frac{(-5x-3)-3(2x-1)}{(2x-1)} \right )\times \left(\frac{(2x-1)}{2(-5x-3)+5(2x-1)} \right)\\\\
=\left(\frac{-5x-3-6x+3}{1} \right )\times \left(\frac{1}{-10x-6+10x-5} \right)\\\\
=\left(\frac{-11x}{1} \right )\times \left(\frac{1}{-11} \right)\\\\
=x\\\\
=RHS \qquad QED$$
$$\\LHS
=\frac{( ((-5x-3)/(2x-1))-3 )}{( 2((-5x-3)/(2x-1)) + 5)}\\\\
=\left(\frac{(-5x-3)}{(2x-1)}-3 \right )\div \left( 2\times\frac{(-5x-3)}{(2x-1)} + 5\right)\\\\
=\left(\frac{(-5x-3)-3(2x-1)}{(2x-1)} \right )\div \left(\frac{2(-5x-3)+5(2x-1)}{(2x-1)} \right)\\\\
=\left(\frac{(-5x-3)-3(2x-1)}{(2x-1)} \right )\times \left(\frac{(2x-1)}{2(-5x-3)+5(2x-1)} \right)\\\\
=\left(\frac{-5x-3-6x+3}{1} \right )\times \left(\frac{1}{-10x-6+10x-5} \right)\\\\
=\left(\frac{-11x}{1} \right )\times \left(\frac{1}{-11} \right)\\\\
=x\\\\
=RHS \qquad QED$$