+0  
 
0
752
1
avatar

How do you solve 0.26x^2-1.05x-1=0

 Jul 7, 2014

Best Answer 

 #1
avatar+130515 
+5

Multiply everything through by 100 to clear the decimals.

26x^2 - 105x - 100 = 0

This doesn't look "factorable".........let's use the on-site solver. (And the quadratic formula!!)......

$${\mathtt{26}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{105}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{100}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{857}}}}{\mathtt{\,-\,}}{\mathtt{105}}\right)}{{\mathtt{52}}}}\\
{\mathtt{x}} = {\frac{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{857}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{105}}\right)}{{\mathtt{52}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{0.795\: \!630\: \!993\: \!904\: \!701\: \!4}}\\
{\mathtt{x}} = {\mathtt{4.834\: \!092\: \!532\: \!366\: \!239\: \!8}}\\
\end{array} \right\}$$

And there are the two solutions .....  !!!

 

 Jul 7, 2014
 #1
avatar+130515 
+5
Best Answer

Multiply everything through by 100 to clear the decimals.

26x^2 - 105x - 100 = 0

This doesn't look "factorable".........let's use the on-site solver. (And the quadratic formula!!)......

$${\mathtt{26}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{105}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{100}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{857}}}}{\mathtt{\,-\,}}{\mathtt{105}}\right)}{{\mathtt{52}}}}\\
{\mathtt{x}} = {\frac{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{857}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{105}}\right)}{{\mathtt{52}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{0.795\: \!630\: \!993\: \!904\: \!701\: \!4}}\\
{\mathtt{x}} = {\mathtt{4.834\: \!092\: \!532\: \!366\: \!239\: \!8}}\\
\end{array} \right\}$$

And there are the two solutions .....  !!!

 

CPhill Jul 7, 2014

0 Online Users