+0  
 
0
1
8267
2
avatar

how do you solve 8^ log base 2 of 5

 May 2, 2014

Best Answer 

 #2
avatar+118687 
+5

$$8^{log_2 5}\\\\
=(2^3)^{log_2 5}\\\\
=2^{3log_2 5}\\\\
=2^{log_2 5^3}\\\\
=2^{log_2 125}\\\\
=125\\\\$$

 And that is exact. 

 May 2, 2014
 #1
avatar+129918 
+5

how do you solve 8^ log base 2 of 5

========================================================

So, I'm assuming you have this:

8(log2(5))

By something called the "change of base" rule, we can write:

log2(5)   =    [ log(5) / log (2) ]

And evaluating this gives us......2.3219280948873626

So we have

82.3219280948873626 ≈ 125

And that's it.....

 May 2, 2014
 #2
avatar+118687 
+5
Best Answer

$$8^{log_2 5}\\\\
=(2^3)^{log_2 5}\\\\
=2^{3log_2 5}\\\\
=2^{log_2 5^3}\\\\
=2^{log_2 125}\\\\
=125\\\\$$

 And that is exact. 

Melody May 2, 2014

5 Online Users

avatar
avatar
avatar
avatar
avatar