+0  
 
+3
809
1
avatar

How do you solve for an operation with complex numbers. Example: 4i over -3+6i

 Dec 11, 2014

Best Answer 

 #1
avatar+33661 
+8

You can clear the comnplex number from the denominator by multiplying both top and bottom by the complex conjugate of the number on the bottom.  Using your example we have

$$\frac{4i}{-3+6i}$$

 

The complex conjugate of -3 + 6i is -3 - 6i, so

$$\frac{4i}{-3+6i}=\frac{4i(-3-6i)}{(-3+6i)(-3-6i)}$$

 

Now the denominator can be expressed as the difference of two squares:  (-3)2 - (6i)2 = 9 - 36i2 = 9 + 36 = 45

and the numerator becomes -3*4i - 6i*4i = -12i -24i2 = -12i +24 (or 24 - 12i)

 

Hence:

$$\frac{4i}{-3+6i}=\frac{24-12i}{45}$$

 

or $$\frac{4i}{-3+6i}=\frac{8-4i}{15} = \frac{8}{15}-\frac{4i}{15}$$

.

 Dec 11, 2014
 #1
avatar+33661 
+8
Best Answer

You can clear the comnplex number from the denominator by multiplying both top and bottom by the complex conjugate of the number on the bottom.  Using your example we have

$$\frac{4i}{-3+6i}$$

 

The complex conjugate of -3 + 6i is -3 - 6i, so

$$\frac{4i}{-3+6i}=\frac{4i(-3-6i)}{(-3+6i)(-3-6i)}$$

 

Now the denominator can be expressed as the difference of two squares:  (-3)2 - (6i)2 = 9 - 36i2 = 9 + 36 = 45

and the numerator becomes -3*4i - 6i*4i = -12i -24i2 = -12i +24 (or 24 - 12i)

 

Hence:

$$\frac{4i}{-3+6i}=\frac{24-12i}{45}$$

 

or $$\frac{4i}{-3+6i}=\frac{8-4i}{15} = \frac{8}{15}-\frac{4i}{15}$$

.

Alan Dec 11, 2014

1 Online Users

avatar