+0  
 
0
661
2
avatar

So I was struggling with the the two radicals which require multiplying to the two of them but I just cannot figure it out. 2√2·√12 How do I multiply the two and recieve the correct answer?

 Mar 31, 2016

Best Answer 

 #1
avatar+1491 
+10

You are given...

 

2√2·√12

 

Multiply...

 

2√24

 

Expand terms inside radical to get a perfect square...

 

2√(4·6)

 

Square root 4 and put it outside...

 

2·2√6

 

Multiply...

 

4√6

 

Done.

 Mar 31, 2016
 #1
avatar+1491 
+10
Best Answer

You are given...

 

2√2·√12

 

Multiply...

 

2√24

 

Expand terms inside radical to get a perfect square...

 

2√(4·6)

 

Square root 4 and put it outside...

 

2·2√6

 

Multiply...

 

4√6

 

Done.

HighSchoolCalculus Mar 31, 2016
 #2
avatar+1904 
0

\(2\times\sqrt{2}\times(-\sqrt{12})\)

 

Since \(\sqrt{2}\) and \(\sqrt{12}\) are not perfect squares, instead of finding what \(\sqrt{2}\)  and \(\sqrt{12}\) are, expand the terms inside the radicals to find perfect squares:

 

\(2\times\sqrt{2}\times\sqrt{12}\)

 

\(2\times\sqrt{2}\times\sqrt{4\times3}\)

 

\(2\times\sqrt{2}\times\sqrt{2\times\times2\times3}\)

 

\(2\times\sqrt{2}\times2\times\sqrt{3}\)

 

\(2\times\sqrt{2}\times2\times\sqrt{3}\)

 

\(4\times\sqrt{2}\times\sqrt{3}\)

 

\(4\times\sqrt{6}\)

 

\(4\sqrt{6}\)

If you want an approximate answer:

 

\(2\times\sqrt{2}\times\sqrt{12}\)

 

\(2\times 1.414213562373095\times\sqrt{12}\)

 

\(2.82842712474619\times\sqrt{12}\)

 

\(2.82842712474619\times3.4641016151377546\)

 

\(9.797958971132712091295411504974\)

 Mar 31, 2016

4 Online Users