(x-6)^2=7
x-6=±sqrt(7)
x=6±sqrt(7)
$$\underset{\,\,\,\,{\textcolor[rgb]{0.66,0.66,0.66}{\rightarrow {\mathtt{x}}}}}{{solve}}{\left(\begin{array}{l}{\sqrt{{\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{6}}\right)}^{{\mathtt{2}}}}}={\sqrt{{\mathtt{7}}}}\\
{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{6}}={\sqrt{{\mathtt{7}}}}\\
{\mathtt{x}}={\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{7}}}}\\
{\mathtt{x}}={\mathtt{6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{7}}}}\end{array}\right)}$$
(x-6)^2=7
x-6=±sqrt(7)
x=6±sqrt(7)
$$\underset{\,\,\,\,{\textcolor[rgb]{0.66,0.66,0.66}{\rightarrow {\mathtt{x}}}}}{{solve}}{\left(\begin{array}{l}{\sqrt{{\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{6}}\right)}^{{\mathtt{2}}}}}={\sqrt{{\mathtt{7}}}}\\
{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{6}}={\sqrt{{\mathtt{7}}}}\\
{\mathtt{x}}={\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{7}}}}\\
{\mathtt{x}}={\mathtt{6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{7}}}}\end{array}\right)}$$