+0  
 
0
332
3
avatar

How many different combinations of quarters, nickels, and dimes can be used to make $0.55?

Guest Apr 21, 2015

Best Answer 

 #3
avatar+18715 
+5

$$\small{\text{Quater $ = 25 \qquad $Dime $ = 10 \qquad $ Nickel $= 5
$}} \\
\small{\text{In \$0.55 max. 2 Quaters, max. 5 Dimes and max. 11 Nickels }} \\\\
\left(\sum\limits_{i=0}^{2} x^{(\textcolor[rgb]{0,0,1}{25}*i}) \right) \times \left (\sum\limits_{i=0}^{5} x^{(\textcolor[rgb]{0,0,1}{10}*i)} \right) \times \left(\sum\limits_{i=0}^{11} x^{(\textcolor[rgb]{0,0,1}{5}*i)} \right) \\\\
\small{\text{$=(1+x^{25}+x^{50})$}} \times
\small{\text{$(1+x^{10}+x^{20}+x^{30}+x^{40}+x^{50})$}} \\ \times
\small{\text{$(1+x^{5}+x^{10}+x^{15}+x^{20}+x^{25}+x^{30}+x^{35}+x^{40}+x^{45}+x^{50}+x^{55})$}}\\
\small{\text{$
=(x^{155})+(x^{150})+2*x^{145}+2*x^{140}+3*x^{135}+4*x^{130} $}} \\
\small{\text{$+5*x^{125}+6*x^{120}+7*x^{115}+8*x^{110}+10*x^{105}+11*x^{100} $}} \\
\small{\text{$+11*x^{95}+12*x^{90}+12*x^{85}+13*x^{80}+13*x^{75}+12*x^{70} $}} \\
\small{\text{$+12*x^{65}+11*x^{60}+\textcolor[rgb]{1,0,0}{11*x^{55}}+10*x^{50}+8*x^{45}+7*x^{40} $}} \\
\small{\text{$+6*x^{35}+5*x^{30}+4*x^{25}+3*x^{20}+2*x^{15}+2*x^{10}+(x^5)+1 $}} \\$$

 

The coefficient from  $$\small{\text{$\textcolor[rgb]{1,0,0}{x^{55}}$}}$$ is $$\small{\text{$\textcolor[rgb]{1,0,0}{ 11 }$}}$$. So there are 11 possibilities.

heureka  Apr 21, 2015
Sort: 

3+0 Answers

 #1
avatar+78719 
+5

Let's see.......

2 quarters  1 nickel

1 quarter  3 dimes

1 quarter 2 dimes  2 nickels

1 quarter  1 dime 4 nickels

1 quarter 6 nickels

5 dimes 1 nickel

4 dimes 3 nickels

3 dimes 5 nickels

2 dimes 7 nickels

1 dime 9 nickels

11 nickels

 

I think that's it......did I leave anything  out ???

 

  

CPhill  Apr 21, 2015
 #2
avatar+18715 
+5

 

How many different combinations of quarters, nickels, and dimes can be used to make $0.55 ?

 

 $$\small{\text{
$
\begin{array}{rccrlclcl}
\hline
\\
1. & \$0.55 &=& & && 3\; Dimes &+& 1\; Quater \\
2. & \$0.55 &=& 1& Nickel && &+& 2\; Quaters \\
3. & \$0.55 &=& 1& Nickel &+& 5\; Dimes \\
4. & \$0.55 &=& 2& Nickels &+& 2\; Dimes &+& 1\; Quater \\
5. & \$0.55 &=& 3& Nickels &+& 4\; Dimes \\
6. & \$0.55 &=& 4& Nickels &+& 1\; Dime &+& 1\; Quater\\
7. & \$0.55 &=& 5& Nickels &+& 3\; Dimes \\
8. & \$0.55 &=& 6& Nickels && &+& 1\; Quater \\
9. & \$0.55 &=& 7& Nickels &+& 2\; Dimes \\
10. & \$0.55 &=& 9& Nickels &+& 1\; Dime \\
11. & \$0.55 &=& 11& Nickels \\
\\
\hline
\end{array}
$}}$$

heureka  Apr 21, 2015
 #3
avatar+18715 
+5
Best Answer

$$\small{\text{Quater $ = 25 \qquad $Dime $ = 10 \qquad $ Nickel $= 5
$}} \\
\small{\text{In \$0.55 max. 2 Quaters, max. 5 Dimes and max. 11 Nickels }} \\\\
\left(\sum\limits_{i=0}^{2} x^{(\textcolor[rgb]{0,0,1}{25}*i}) \right) \times \left (\sum\limits_{i=0}^{5} x^{(\textcolor[rgb]{0,0,1}{10}*i)} \right) \times \left(\sum\limits_{i=0}^{11} x^{(\textcolor[rgb]{0,0,1}{5}*i)} \right) \\\\
\small{\text{$=(1+x^{25}+x^{50})$}} \times
\small{\text{$(1+x^{10}+x^{20}+x^{30}+x^{40}+x^{50})$}} \\ \times
\small{\text{$(1+x^{5}+x^{10}+x^{15}+x^{20}+x^{25}+x^{30}+x^{35}+x^{40}+x^{45}+x^{50}+x^{55})$}}\\
\small{\text{$
=(x^{155})+(x^{150})+2*x^{145}+2*x^{140}+3*x^{135}+4*x^{130} $}} \\
\small{\text{$+5*x^{125}+6*x^{120}+7*x^{115}+8*x^{110}+10*x^{105}+11*x^{100} $}} \\
\small{\text{$+11*x^{95}+12*x^{90}+12*x^{85}+13*x^{80}+13*x^{75}+12*x^{70} $}} \\
\small{\text{$+12*x^{65}+11*x^{60}+\textcolor[rgb]{1,0,0}{11*x^{55}}+10*x^{50}+8*x^{45}+7*x^{40} $}} \\
\small{\text{$+6*x^{35}+5*x^{30}+4*x^{25}+3*x^{20}+2*x^{15}+2*x^{10}+(x^5)+1 $}} \\$$

 

The coefficient from  $$\small{\text{$\textcolor[rgb]{1,0,0}{x^{55}}$}}$$ is $$\small{\text{$\textcolor[rgb]{1,0,0}{ 11 }$}}$$. So there are 11 possibilities.

heureka  Apr 21, 2015

3 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details