+0

# How many distinct rectangles are there with integer side lengths such that the numerical value of area of the rectangle in square units is e

+1
101
2
+120

How many distinct rectangles are there with integer side lengths such that the numerical value of area of the rectangle in square units is equal to $5$ times the numerical value of the perimeter in units? (Two rectangles are considered to be distinct if they are not congruent.)

RektTheNoob  Aug 8, 2017
Sort:

#1
+76222
+1

We have the following :

xy  = 5 [ 2 (x + y) ]      where x, y are the dimensions of each rectangle

xy  =  10x + 10y

Solving for y, we have that

y =  [ 10x ] / [ x - 10  ]

It's clear that  x > 10   and as  x→ infinity, y → 10

And because y decreases as x increases....the smallest integer value possible for y is when y = 11 and x  = 110

And y will have an integer value of 60   whenever x = 12

And when x = 14, y = 35

And when x = 15, y = 30

And when x= 20, y = 20

And no x integer values from 21 - 29   result in y being an integer

And when x = 30, y = 15...but these are just the same dimensions as when x = 15 and  y = 30

So....there are 5  distinct rectangles possible which fit the criteria :

20 x 20

15 x 30

14 x 35

12 x 60

11 x 110

CPhill  Aug 9, 2017
#2
+18566
0

How many distinct rectangles are there with integer side lengths such that the numerical value of area of the rectangle in square units is equal to 5 times the numerical value of the perimeter in units?

Formula:
$$\begin{array}{rcll} \text{area of the rectangle } &=& xy \\ 5 \times \text{ the numerical value of the perimeter } &=& 5\times [ 2(x+y) ] \\ xy &=& 5\times [ 2(x+y) ] \\ xy &=& 10\times (x+y) \\ xy &=& 10x+ 10y \\ xy - 10x - 10y &=& 0 \quad & | \quad + 100 \\ xy - 10x - 10y +100 &=& 100 \\ (x-10)\times (y-10) &=& 100 \\\\ \mathbf{(x-10)\times (y-10)} & \mathbf{=} & \mathbf{100} \\ \end{array}$$

So x-10 and y-10 are integers, whose product is 100
How many divisors does 100 have?

Divisors:
1 | 2 | 4 | 5 | 10 | 20 | 25 | 50 | 100 (9 divisors)

$$\begin{array}{|rrcll|} \hline \text{or } & 1\times 100 &=& 100 \\ \text{or } & 2\times 50 &=& 100 \\ \text{or } & 4\times 25 &=& 100 \\ \text{or } & 5\times 20 &=& 100 \\ \text{or } & 10\times 10 &=& 100 \\ \hline \end{array}$$

Solution:

$$\begin{array}{|rclcl|} \hline \underbrace{(x-10)}_{=1} &\times& \underbrace{(y-10)}_{=100} & = & \mathbf{1\times 100} \\\\ x-10 = 1 && y-10 = 100 \\ x = 11 && y = 110 \\ &\mathbf{(11\times 110)} \\ \hline \underbrace{(x-10)}_{=2} &\times& \underbrace{(y-10)}_{=50} & = & \mathbf{2\times 50} \\\\ x-10 = 2 && y-10 = 50 \\ x = 12 && y = 60 \\ &\mathbf{(12\times 60)} \\ \hline \underbrace{(x-10)}_{=4} &\times& \underbrace{(y-10)}_{=25} & = & \mathbf{4\times 25} \\\\ x-10 = 4 && y-10 = 25 \\ x = 14 && y = 35 \\ &\mathbf{(14\times 35)} \\ \hline \underbrace{(x-10)}_{=5} &\times& \underbrace{(y-10)}_{=20} & = & \mathbf{5\times 20} \\\\ x-10 = 5 && y-10 = 20 \\ x = 15 && y = 30 \\ &\mathbf{(15\times 30)} \\ \hline \underbrace{(x-10)}_{=10} &\times& \underbrace{(y-10)}_{=10} & = & \mathbf{10\times 10} \\\\ x-10 = 10 && y-10 = 10 \\ x = 20 && y = 20 \\ &\mathbf{(20\times 20)} \\ \hline \end{array}$$

There are 5  distinct rectangles:

$$\mathbf{(11\times 110)} \\ \mathbf{(12\times 60)} \\ \mathbf{(14\times 35)} \\ \mathbf{(15\times 30)} \\ \mathbf{(20\times 20)}$$

heureka  Aug 9, 2017

### 28 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details