14^15 mod 15 = 14. Use the calculator here. First calculate: 14^15 and then press "mod" key followed by 15. You should get 14 as the remainder.
I shall try your method:)
14^15 = 155568095557812224155568095557812224mod15 = 155568095557812224*mod15
As you can see this calculator does not work that way.
I shall try putting it in properly - and yes this calculator is capable of calculating it straight up
(I had thought the number , i mean 14^15, might be too big but it is not)
mod(14^15,15) = 14
I result is directly from the web2 calc on this posting page :)
1415+1=(14+1)(1414-1413+1412-......-14+1)=15*(1414-1413+1412-......-14+1)= 1415+1 is divisible by 15
therefore, 1415 mod 15=15-1=14
Another way to solve it is this one:
1415=(15−1)15=1515∗(150)−1514∗(151)+.....+15∗(1514)−1∗(1515)=15∗(1514∗(150)−1513∗(151)+....+1∗(1514))−1
Here is another way
14^1=14= -1mod15
14^2=196= +1 mod15
14^3=2744 = mod(2744,15) = 14 = -1
114^4 = 38416 = mod(38416,15) = 1
We have a pattern
Forn∈Positive integers142n=+1142n−1=−1so1415mod15=−1or14
how to calculate 14^15 mod 15
see link: https://web2.0calc.com/questions/i-have-the-same-problem-like-the-guest#r4