+0  
 
0
538
2
avatar

how to change decimal into fraction

 Mar 9, 2015

Best Answer 

 #2
avatar
+5

There are three types of decimal numbers: decimal numbers that terminate, decimal numbers that repeat forever, and decimal number that do not repeat but go on forever.

 

Decimal Numbers That Terminate

 

Example 1

 

$${\mathtt{0.6}}$$

 

1.  To turn $${\mathtt{0.6}}$$ into a fraction, notice that the $${\mathtt{6}}$$ is in the tenths spot.  Write the fraction as six-tenths:  $${\frac{{\mathtt{6}}}{{\mathtt{10}}}}$$

 

2.  Now take $${\frac{{\mathtt{6}}}{{\mathtt{10}}}}$$ and reduce to lowest form:  $${\frac{{\mathtt{3}}}{{\mathtt{5}}}}$$

 

$${\mathtt{0.6}}$$ as a fraction is $${\frac{{\mathtt{3}}}{{\mathtt{5}}}}$$

 

Example 2

 

$${\mathtt{0.75}}$$

 

1.  To turn $${\mathtt{0.75}}$$ into a fraction, notice that the $${\mathtt{7}}$$ is in the tnths place and the $${\mathtt{5}}$$ is in the hundredth place. Write the fraction as seventy-five hundredths:  $${\frac{{\mathtt{75}}}{{\mathtt{100}}}}$$

 

2.  Now take $${\frac{{\mathtt{75}}}{{\mathtt{100}}}}$$  and reduce it to lowest form: $${\frac{{\mathtt{3}}}{{\mathtt{4}}}}$$

 

$${\mathtt{0.75}}$$ as a fraction is $${\frac{{\mathtt{3}}}{{\mathtt{4}}}}$$

 

Decimal Number That Repeat Forever

 

$${\mathtt{0.555\: \!555\: \!555\: \!555\: \!555\: \!5}}$$...

 

1.  To turn $${\mathtt{0.555\: \!555\: \!555\: \!555\: \!555\: \!5}}$$... into a fraction, let $${\mathtt{X}} = {\mathtt{0.555\: \!555\: \!555\: \!555\: \!555\: \!5}}$$...

 

2.  Multiply both sides by $${\mathtt{10}}$$$${\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{X}} = {\mathtt{5.555\: \!555\: \!555\: \!555\: \!555}}$$...

 

3.  Subtract $${\mathtt{X}}$$ to both sides:  $${\mathtt{9}}{\mathtt{\,\times\,}}{\mathtt{X}} = {\mathtt{5}}$$

 

4.  Divide both sides by $${\mathtt{9}}$$:  $${\mathtt{X}} = {\frac{{\mathtt{5}}}{{\mathtt{9}}}}$$

 

5.  Reduce $${\frac{{\mathtt{5}}}{{\mathtt{9}}}}$$ to its lowest form if possible:  $${\frac{{\mathtt{5}}}{{\mathtt{9}}}}$$

 

$${\mathtt{0.555\: \!555\: \!555\: \!555\: \!555\: \!5}}$$... as a fraction is $${\frac{{\mathtt{5}}}{{\mathtt{9}}}}$$

 

Example 2

 

$${\mathtt{0.121\: \!212\: \!121\: \!212\: \!121\: \!2}}$$...

 

1.  To turn $${\mathtt{0.121\: \!212\: \!121\: \!212\: \!121\: \!2}}$$... into a fraction, let $${\mathtt{X}} = {\mathtt{0.121\: \!212\: \!121\: \!212\: \!121\: \!2}}$$...

 

2.  Multiply both sides by $${\mathtt{100}}$$$${\mathtt{100}}{\mathtt{\,\times\,}}{\mathtt{x}} = {\mathtt{12.121\: \!212\: \!121\: \!212\: \!12}}$$...

 

3.  Subtract X to both sides:  $${\mathtt{99}}{\mathtt{\,\times\,}}{\mathtt{x}} = {\mathtt{12}}$$

 

4.  Divide both sides by $${\mathtt{99}}$$:  $${\mathtt{X}} = {\frac{{\mathtt{12}}}{{\mathtt{99}}}}$$

 

5.  Reduce $${\frac{{\mathtt{12}}}{{\mathtt{99}}}}$$ to its lowest form if possible:  $${\frac{{\mathtt{4}}}{{\mathtt{33}}}}$$

 

$${\mathtt{0.121\: \!212\: \!121\: \!212\: \!121\: \!2}}$$... as a fraction is $${\frac{{\mathtt{4}}}{{\mathtt{33}}}}$$

 

Example 3

 

$${\mathtt{0.144\: \!444\: \!444\: \!444\: \!444\: \!4}}$$...

 

1.  To turn $${\mathtt{0.144\: \!444\: \!444\: \!444\: \!444\: \!4}}$$... into a fraction let $${\mathtt{X}} = {\mathtt{0.144\: \!444\: \!444\: \!444\: \!444\: \!4}}$$...

 

2.  Multiply both sides by $${\mathtt{100}}$$:  $${\mathtt{100}}{\mathtt{\,\times\,}}{\mathtt{X}} = {\mathtt{14.444\: \!444\: \!444\: \!444\: \!444}}$$...

 

3.  Subtract X to both sides:  $${\mathtt{99}}{\mathtt{\,\times\,}}{\mathtt{X}} = {\mathtt{14.3}}$$

 

4.  Divide both sides by $${\mathtt{99}}$$:  $${\mathtt{X}} = {\frac{{\mathtt{14.3}}}{{\mathtt{99}}}}$$

 

5.  Multiply the Numerator and Dominator by $${\mathtt{10}}$$ to get rid of the decimal number in the numerator:  $${\frac{{\mathtt{143}}}{{\mathtt{990}}}}$$

 

6.  Reduce $${\frac{{\mathtt{143}}}{{\mathtt{990}}}}$$ to its lowest form if possible:  $${\frac{{\mathtt{13}}}{{\mathtt{90}}}}$$

 

$${\mathtt{0.144\: \!444\: \!444\: \!444\: \!444\: \!4}}$$... as a fraction is $${\frac{{\mathtt{13}}}{{\mathtt{90}}}}$$

 

Decimal Numbers That Do Not Repeat But Go On Forever

 

Example 1

 

$${\mathtt{\pi}}$$

 

$${\mathtt{\pi}}$$ is a decimal number that goes on forever but does not repeat.  That decimal number is $${\mathtt{3.141\: \!592\: \!653\: \!589\: \!793\: \!2}}$$...  Because $${\mathtt{\pi}}$$ does not repeat but goes on forever, there is no fraction that can represent $${\mathtt{\pi}}$$.

 

Example 2

 

$${\mathtt{e}}$$

 

$${\mathtt{e}}$$ is a decimal number that goes on forever but does not repeat.  That decimal number is $${\mathtt{2.718\: \!281\: \!828\: \!459\: \!045\: \!2}}$$...  Because $${\mathtt{e}}$$ does not repeat but goes on forever, there is no fratin that can represent $${\mathtt{e}}$$.

 Mar 9, 2015
 #1
avatar
+5

If the decimal is 0.9, it means 9/10. The 9 is in the tenths place. If the decimal is 0.99, it means 99/100, the second 9 is in the hundredths place. If you continue 0.999 means 999/1000, etc.

 Mar 9, 2015
 #2
avatar
+5
Best Answer

There are three types of decimal numbers: decimal numbers that terminate, decimal numbers that repeat forever, and decimal number that do not repeat but go on forever.

 

Decimal Numbers That Terminate

 

Example 1

 

$${\mathtt{0.6}}$$

 

1.  To turn $${\mathtt{0.6}}$$ into a fraction, notice that the $${\mathtt{6}}$$ is in the tenths spot.  Write the fraction as six-tenths:  $${\frac{{\mathtt{6}}}{{\mathtt{10}}}}$$

 

2.  Now take $${\frac{{\mathtt{6}}}{{\mathtt{10}}}}$$ and reduce to lowest form:  $${\frac{{\mathtt{3}}}{{\mathtt{5}}}}$$

 

$${\mathtt{0.6}}$$ as a fraction is $${\frac{{\mathtt{3}}}{{\mathtt{5}}}}$$

 

Example 2

 

$${\mathtt{0.75}}$$

 

1.  To turn $${\mathtt{0.75}}$$ into a fraction, notice that the $${\mathtt{7}}$$ is in the tnths place and the $${\mathtt{5}}$$ is in the hundredth place. Write the fraction as seventy-five hundredths:  $${\frac{{\mathtt{75}}}{{\mathtt{100}}}}$$

 

2.  Now take $${\frac{{\mathtt{75}}}{{\mathtt{100}}}}$$  and reduce it to lowest form: $${\frac{{\mathtt{3}}}{{\mathtt{4}}}}$$

 

$${\mathtt{0.75}}$$ as a fraction is $${\frac{{\mathtt{3}}}{{\mathtt{4}}}}$$

 

Decimal Number That Repeat Forever

 

$${\mathtt{0.555\: \!555\: \!555\: \!555\: \!555\: \!5}}$$...

 

1.  To turn $${\mathtt{0.555\: \!555\: \!555\: \!555\: \!555\: \!5}}$$... into a fraction, let $${\mathtt{X}} = {\mathtt{0.555\: \!555\: \!555\: \!555\: \!555\: \!5}}$$...

 

2.  Multiply both sides by $${\mathtt{10}}$$$${\mathtt{10}}{\mathtt{\,\times\,}}{\mathtt{X}} = {\mathtt{5.555\: \!555\: \!555\: \!555\: \!555}}$$...

 

3.  Subtract $${\mathtt{X}}$$ to both sides:  $${\mathtt{9}}{\mathtt{\,\times\,}}{\mathtt{X}} = {\mathtt{5}}$$

 

4.  Divide both sides by $${\mathtt{9}}$$:  $${\mathtt{X}} = {\frac{{\mathtt{5}}}{{\mathtt{9}}}}$$

 

5.  Reduce $${\frac{{\mathtt{5}}}{{\mathtt{9}}}}$$ to its lowest form if possible:  $${\frac{{\mathtt{5}}}{{\mathtt{9}}}}$$

 

$${\mathtt{0.555\: \!555\: \!555\: \!555\: \!555\: \!5}}$$... as a fraction is $${\frac{{\mathtt{5}}}{{\mathtt{9}}}}$$

 

Example 2

 

$${\mathtt{0.121\: \!212\: \!121\: \!212\: \!121\: \!2}}$$...

 

1.  To turn $${\mathtt{0.121\: \!212\: \!121\: \!212\: \!121\: \!2}}$$... into a fraction, let $${\mathtt{X}} = {\mathtt{0.121\: \!212\: \!121\: \!212\: \!121\: \!2}}$$...

 

2.  Multiply both sides by $${\mathtt{100}}$$$${\mathtt{100}}{\mathtt{\,\times\,}}{\mathtt{x}} = {\mathtt{12.121\: \!212\: \!121\: \!212\: \!12}}$$...

 

3.  Subtract X to both sides:  $${\mathtt{99}}{\mathtt{\,\times\,}}{\mathtt{x}} = {\mathtt{12}}$$

 

4.  Divide both sides by $${\mathtt{99}}$$:  $${\mathtt{X}} = {\frac{{\mathtt{12}}}{{\mathtt{99}}}}$$

 

5.  Reduce $${\frac{{\mathtt{12}}}{{\mathtt{99}}}}$$ to its lowest form if possible:  $${\frac{{\mathtt{4}}}{{\mathtt{33}}}}$$

 

$${\mathtt{0.121\: \!212\: \!121\: \!212\: \!121\: \!2}}$$... as a fraction is $${\frac{{\mathtt{4}}}{{\mathtt{33}}}}$$

 

Example 3

 

$${\mathtt{0.144\: \!444\: \!444\: \!444\: \!444\: \!4}}$$...

 

1.  To turn $${\mathtt{0.144\: \!444\: \!444\: \!444\: \!444\: \!4}}$$... into a fraction let $${\mathtt{X}} = {\mathtt{0.144\: \!444\: \!444\: \!444\: \!444\: \!4}}$$...

 

2.  Multiply both sides by $${\mathtt{100}}$$:  $${\mathtt{100}}{\mathtt{\,\times\,}}{\mathtt{X}} = {\mathtt{14.444\: \!444\: \!444\: \!444\: \!444}}$$...

 

3.  Subtract X to both sides:  $${\mathtt{99}}{\mathtt{\,\times\,}}{\mathtt{X}} = {\mathtt{14.3}}$$

 

4.  Divide both sides by $${\mathtt{99}}$$:  $${\mathtt{X}} = {\frac{{\mathtt{14.3}}}{{\mathtt{99}}}}$$

 

5.  Multiply the Numerator and Dominator by $${\mathtt{10}}$$ to get rid of the decimal number in the numerator:  $${\frac{{\mathtt{143}}}{{\mathtt{990}}}}$$

 

6.  Reduce $${\frac{{\mathtt{143}}}{{\mathtt{990}}}}$$ to its lowest form if possible:  $${\frac{{\mathtt{13}}}{{\mathtt{90}}}}$$

 

$${\mathtt{0.144\: \!444\: \!444\: \!444\: \!444\: \!4}}$$... as a fraction is $${\frac{{\mathtt{13}}}{{\mathtt{90}}}}$$

 

Decimal Numbers That Do Not Repeat But Go On Forever

 

Example 1

 

$${\mathtt{\pi}}$$

 

$${\mathtt{\pi}}$$ is a decimal number that goes on forever but does not repeat.  That decimal number is $${\mathtt{3.141\: \!592\: \!653\: \!589\: \!793\: \!2}}$$...  Because $${\mathtt{\pi}}$$ does not repeat but goes on forever, there is no fraction that can represent $${\mathtt{\pi}}$$.

 

Example 2

 

$${\mathtt{e}}$$

 

$${\mathtt{e}}$$ is a decimal number that goes on forever but does not repeat.  That decimal number is $${\mathtt{2.718\: \!281\: \!828\: \!459\: \!045\: \!2}}$$...  Because $${\mathtt{e}}$$ does not repeat but goes on forever, there is no fratin that can represent $${\mathtt{e}}$$.

Guest Mar 9, 2015

0 Online Users