We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
282
2
avatar

How to do these two problems? 

1. 

2.

 

 Feb 19, 2018
 #1
avatar+99586 
+1

1) 

 

a. Remember  that  the cosine is the reciprocal of the secant

 

So  

 

A / D   =  sec (theta)

 

1 / [ A / D]  =  1/ cos (theta)           [ flip both fractions over ]

 

D /A  =  cos(theta)

 

D / A   =  cos (theta)

 

b.   cos (theta)  =  1 / sec(theta)

 

c.  tan (theta) =  y / x  =  3 / 4     so x = 4

If sin (theta)  = y/r  =   3/5  then  r  = 5

So....cos (theta)  =  x / r   =   4/5

 

So we have :

 

cos (theta)  = D /A

 

4/5  =  .25 cm / A      rearrange as

 

 =  .25 cm. / (4/5)   =  (1/4) / (4/5)  =  (1/4) * (5/4)  =  5/16  cm

 

 

cool cool cool

 Feb 19, 2018
 #2
avatar+99586 
+1

2.

 

a.  sin(theta) sec(theta)  =   sin(theta) *  [1/cos(theta) ]   =  sin (theta) / cos (theta)  =

 

tan (theta)

 

 

b. 

 

The cotangent  of the angle would be   adj / opp   =  d / h

 

So we have

 

cot (theta)  =  d / h

 

cot  (60°)  ≈  .58

 

.58   =  3008 / h       rearrange as

 

h  =  3008 / .58   ≈   5186 ft

 

 

 

cool cool cool

 Feb 19, 2018

22 Online Users

avatar
avatar
avatar