+0  
 
0
301
1
avatar

how to find the turning point of a parabola?

Guest Oct 13, 2017

Best Answer 

 #1
avatar+7155 
+2

When the equation of the parabola is in this form:

 

y  =  ax2 + bx + c

 

The  x-coordinate  of the turning point   =   - \(\frac{b}{2a}\)

 

----------

 

For example, if the equation of the parabola is

 

y  =  3x2 + 4x + 1

 

The  x-coordinate  of the turning point   =   - \(\frac{4}{2(3)}\)   =   - \(\frac{2}{3}\)

 

Plug this in for  x  to find the value of the  y-coordinate.

 

y   =   3( - \(\frac{2}{3}\) )2 + 4( - \(\frac{2}{3}\) ) + 1   =   - \(\frac13\)

 

So the turning point is  ( - \(\frac{2}{3}\),  - \(\frac{1}{3}\) )

hectictar  Oct 13, 2017
 #1
avatar+7155 
+2
Best Answer

When the equation of the parabola is in this form:

 

y  =  ax2 + bx + c

 

The  x-coordinate  of the turning point   =   - \(\frac{b}{2a}\)

 

----------

 

For example, if the equation of the parabola is

 

y  =  3x2 + 4x + 1

 

The  x-coordinate  of the turning point   =   - \(\frac{4}{2(3)}\)   =   - \(\frac{2}{3}\)

 

Plug this in for  x  to find the value of the  y-coordinate.

 

y   =   3( - \(\frac{2}{3}\) )2 + 4( - \(\frac{2}{3}\) ) + 1   =   - \(\frac13\)

 

So the turning point is  ( - \(\frac{2}{3}\),  - \(\frac{1}{3}\) )

hectictar  Oct 13, 2017

23 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.