+0  
 
0
427
1
avatar

how to find the turning point of a parabola?

 Oct 13, 2017

Best Answer 

 #1
avatar+7352 
+2

When the equation of the parabola is in this form:

 

y  =  ax2 + bx + c

 

The  x-coordinate  of the turning point   =   - \(\frac{b}{2a}\)

 

----------

 

For example, if the equation of the parabola is

 

y  =  3x2 + 4x + 1

 

The  x-coordinate  of the turning point   =   - \(\frac{4}{2(3)}\)   =   - \(\frac{2}{3}\)

 

Plug this in for  x  to find the value of the  y-coordinate.

 

y   =   3( - \(\frac{2}{3}\) )2 + 4( - \(\frac{2}{3}\) ) + 1   =   - \(\frac13\)

 

So the turning point is  ( - \(\frac{2}{3}\),  - \(\frac{1}{3}\) )

 Oct 13, 2017
 #1
avatar+7352 
+2
Best Answer

When the equation of the parabola is in this form:

 

y  =  ax2 + bx + c

 

The  x-coordinate  of the turning point   =   - \(\frac{b}{2a}\)

 

----------

 

For example, if the equation of the parabola is

 

y  =  3x2 + 4x + 1

 

The  x-coordinate  of the turning point   =   - \(\frac{4}{2(3)}\)   =   - \(\frac{2}{3}\)

 

Plug this in for  x  to find the value of the  y-coordinate.

 

y   =   3( - \(\frac{2}{3}\) )2 + 4( - \(\frac{2}{3}\) ) + 1   =   - \(\frac13\)

 

So the turning point is  ( - \(\frac{2}{3}\),  - \(\frac{1}{3}\) )

hectictar Oct 13, 2017

32 Online Users

avatar
avatar
avatar
avatar
avatar
avatar