We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
503
1
avatar

how to find the turning point of a parabola?

 Oct 13, 2017

Best Answer 

 #1
avatar+8579 
+2

When the equation of the parabola is in this form:

 

y  =  ax2 + bx + c

 

The  x-coordinate  of the turning point   =   - \(\frac{b}{2a}\)

 

----------

 

For example, if the equation of the parabola is

 

y  =  3x2 + 4x + 1

 

The  x-coordinate  of the turning point   =   - \(\frac{4}{2(3)}\)   =   - \(\frac{2}{3}\)

 

Plug this in for  x  to find the value of the  y-coordinate.

 

y   =   3( - \(\frac{2}{3}\) )2 + 4( - \(\frac{2}{3}\) ) + 1   =   - \(\frac13\)

 

So the turning point is  ( - \(\frac{2}{3}\),  - \(\frac{1}{3}\) )

 Oct 13, 2017
 #1
avatar+8579 
+2
Best Answer

When the equation of the parabola is in this form:

 

y  =  ax2 + bx + c

 

The  x-coordinate  of the turning point   =   - \(\frac{b}{2a}\)

 

----------

 

For example, if the equation of the parabola is

 

y  =  3x2 + 4x + 1

 

The  x-coordinate  of the turning point   =   - \(\frac{4}{2(3)}\)   =   - \(\frac{2}{3}\)

 

Plug this in for  x  to find the value of the  y-coordinate.

 

y   =   3( - \(\frac{2}{3}\) )2 + 4( - \(\frac{2}{3}\) ) + 1   =   - \(\frac13\)

 

So the turning point is  ( - \(\frac{2}{3}\),  - \(\frac{1}{3}\) )

hectictar Oct 13, 2017

14 Online Users

avatar