We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
117
1
avatar

I know this isn't stirctly math related but how do a I put \({x}^{{x}^{{x}^{x}}}\) goign on forever in wolfram alpha? I haven't been able to find an answer to this online.

 

I wanted to find out \({x}^{{x}^{{x}^{x}}}=2\) but I can't do it

 

Edit: I think the answer is \(\sqrt{2}\) but I'm not sure. I want to know how to do infinite exponents regardless.

 Jan 29, 2019
edited by Guest  Jan 29, 2019
 #1
avatar+103948 
+1

 Using  the log property that

x^x   =   a

 

x ln (x) = ln (a)

 

x =  ln (a) / ln (x)      repetitively

 

     

                  x

            x

       x

  x            =      2

 

 

    x

  x

x      ln(x)    =   ln (2)

 

 

      x

   x

x      =    [ ln 2] / [ ln x]

 

 

  x

x     ln (x)  =  ln ( ln(2) / [ ln x] )

 

   x

x      =    ln ( ln(2) / [ ln x] ) / [ ln x ]

 

 

x ln (x) =  ln (   ln ( ln(2) / [ ln x] ) / [ ln x ] )

 

x = ln (   ln ( ln(2) / [ ln x] ) / [ ln x ] ) / ln (x) 

 

This would...of course.....not be easy to evalute algebraically.....but....

 

WolframAlpha shows the solution ≈ 1.4466014....

 

 

cool cool cool          

 

 Jan 30, 2019
edited by CPhill  Jan 30, 2019

16 Online Users

avatar
avatar