+0  
 
0
48
1
avatar

Here's the question:

 

 

For a), I used the vertex form of the parabola to solve for my equation by taking the min. height of \({4}\)m and the width (10,0) to find my \({a}\) value.

 

\(0 = {a{(10)^2+4}}\)
\(-4 = {100a}\)

 

making \(a = {-0.04}\).

 

plugging this back back into the above equation, i should get the right formula but instead the textbook got \(y = {-0.04x^2 + 5}\), so i'm confused?

 

I also need help with b), the answer is \(0 ≤ {-0.04x^{2} + 5}\) but why include the equal?

 

Thank you in advance !

Guest Jul 31, 2018
 #1
avatar+19835 
+1

Here's the question:

 

a)

 

\(\begin{array}{|lrcll|} \hline & y &=& a(x-h)^2 + k \quad & | \quad h = 0,\ k = 5 \\ & y &=& a(x-0)^2 + 5 \\ & \mathbf{y} & \mathbf{=}& \mathbf{ax^2 + 5} \\\\ P(5,4): & 4 &=& a5^2 + 5 \\ & 25a + 5 &=& 4 \\ & 25a &=& 4-5 \\ & 25a &=& -1 \quad & | \quad \\ & a &=& -\frac{1}{25} \\ & a &=& -0.04\\\\ \boxed{y=-0.04x^2+5} \\ \hline \end{array} \)

 

b)

The highway is on level y = 0

 

laugh

heureka  Jul 31, 2018

8 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.