Let S=12+322+523+...+2n−12n ...(1)
⇒ S2=122+323+524+...+2n−22n+2n−12n+1 ...(2)
Subtracting eq(2) from (1),
S2=12+222+223+224+...+12n−2n−12n+1
=12+(12+14+18+....12n)−2n−12n+1
=12+[12(1−12n)1−12]−2n−12n+1
=12+1−12n−2n−12n+1
=32−[2+2n−12n+1]
S2=32−2n+12n+1
⇒S=3−2n+12n