Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
433
2
avatar

Evaluate the sum 1/2 + 3/2^2 + 5/2^3 + 7/2^4 + ...

 Jun 15, 2021
 #1
avatar+526 
+2

Let S=12+322+523+...+2n12n                   ...(1)

⇒ S2=122+323+524+...+2n22n+2n12n+1         ...(2)

 

Subtracting eq(2) from (1), 

S2=12+222+223+224+...+12n2n12n+1

     =12+(12+14+18+....12n)2n12n+1

     =12+[12(112n)112]2n12n+1

     =12+112n2n12n+1

     =32[2+2n12n+1]

S2=322n+12n+1

 

S=32n+12n

 Jun 15, 2021
 #2
avatar+26396 
+2

Evaluate the sum 12+322+523+724+

 

s=12+322+523+724+s=121+322+523+724+925+21s=122+323+524+725+s21s=121+2(22+23+24+=221121)s(121)=121+2221121s12=12+12112s12=12+122s12=12(1+2)s=1+2s=3

 

laugh

 Jun 15, 2021

1 Online Users