+0  
 
0
577
1
avatar

$${{\mathtt{e}}}^{\left({\mathtt{24.725\: \!6}}{\mathtt{\,\times\,}}{\mathtt{X}}\right)} = {\mathtt{0.276\: \!3}} \Rightarrow \left\{ \begin{array}{l}\end{array} \right\}$$

 Jan 18, 2015

Best Answer 

 #1
avatar+33665 
+10

Take log to the base e of both sides, so:

 

24.7256x = ln(0.2763)   In general if e^a = b then a = ln(b)

 

Divide both sides by 24.7256:

x =  ln(0.2763)/24.7256

 

$${\mathtt{x}} = {\frac{{ln}{\left({\mathtt{0.276\: \!3}}\right)}}{{\mathtt{24.725\: \!6}}}} \Rightarrow {\mathtt{x}} = -{\mathtt{0.052\: \!021\: \!712\: \!195\: \!164\: \!8}}$$

.

 Jan 18, 2015
 #1
avatar+33665 
+10
Best Answer

Take log to the base e of both sides, so:

 

24.7256x = ln(0.2763)   In general if e^a = b then a = ln(b)

 

Divide both sides by 24.7256:

x =  ln(0.2763)/24.7256

 

$${\mathtt{x}} = {\frac{{ln}{\left({\mathtt{0.276\: \!3}}\right)}}{{\mathtt{24.725\: \!6}}}} \Rightarrow {\mathtt{x}} = -{\mathtt{0.052\: \!021\: \!712\: \!195\: \!164\: \!8}}$$

.

Alan Jan 18, 2015

1 Online Users