$${{\mathtt{e}}}^{\left({\mathtt{24.725\: \!6}}{\mathtt{\,\times\,}}{\mathtt{X}}\right)} = {\mathtt{0.276\: \!3}} \Rightarrow \left\{ \begin{array}{l}\end{array} \right\}$$
Take log to the base e of both sides, so:
24.7256x = ln(0.2763) In general if e^a = b then a = ln(b)
Divide both sides by 24.7256:
x = ln(0.2763)/24.7256
$${\mathtt{x}} = {\frac{{ln}{\left({\mathtt{0.276\: \!3}}\right)}}{{\mathtt{24.725\: \!6}}}} \Rightarrow {\mathtt{x}} = -{\mathtt{0.052\: \!021\: \!712\: \!195\: \!164\: \!8}}$$
.
Take log to the base e of both sides, so:
24.7256x = ln(0.2763) In general if e^a = b then a = ln(b)
Divide both sides by 24.7256:
x = ln(0.2763)/24.7256
$${\mathtt{x}} = {\frac{{ln}{\left({\mathtt{0.276\: \!3}}\right)}}{{\mathtt{24.725\: \!6}}}} \Rightarrow {\mathtt{x}} = -{\mathtt{0.052\: \!021\: \!712\: \!195\: \!164\: \!8}}$$
.