+0  
 
0
1170
5
avatar+647 

I hope this link works now 

Image and video hosting by TinyPic

 Oct 16, 2017
edited by waffles  Oct 16, 2017
edited by waffles  Oct 16, 2017
edited by waffles  Oct 16, 2017

Best Answer 

 #5
avatar+9479 
+1

 

Let's call the coordinates of the treasure  (x, y) .

 

The treasure is  10  yards away from  (0, 0) ,

and we know that the distance between any two points  = \(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)

 

Using the points  (x, y)  and  (0, 0)  and a distance of  10 , we have...

 

10  =  \(\sqrt{(x-0)^2+(y-0)^2}\,=\,\sqrt{x^2+y^2}\)                         →     100  =  x2 + y2

 

The treasure is  10  yards from  (15, 0) . So we know that

 

10  =  \(\sqrt{(x-15)^2+(y-0)^2}\,=\,\sqrt{(x-15)^2+y^2}\)          →     100  =  (x - 15)2 + y2

 

Now we have two equations and two variables.

 

They both equal 100, so we can set these equal.

 

x2 + y2  =  (x - 15)2 + y2

x2  =  (x - 15)2

x  =  ±(x - 15)

x  =  x - 15          or          x  =  -(x - 15)

0  =  -15                           x  =  -x + 15

 false                              2x  =  15

                                        x  =  15 / 2

 

Plug this value for  x  into  x2 + y2 = 100  to find the value of  y .

 

(15 / 2)2 + y2  =  100

y2  =  100 -  (15 / 2)2

y   =  ±√[ 100 -  (15 / 2)2 ]

y  ≈  6.6

 

Since there are only positive values of  y  on the map, the coordinates are  ≈  (7.5, 6.6)

 Oct 16, 2017
 #1
avatar+118667 
0

That link does not work for me waffles. :(

I did answer one of  your questions down the page a bit.

I 'guessed' what the pic might be :)    Did I get the pic right ??

 

https://web2.0calc.com/questions/pretty-please#r2

 Oct 16, 2017
 #2
avatar+647 
0

I posted a new photo

 Oct 16, 2017
 #3
avatar+118667 
0

What about the first question. The one I already gave the address for.

It would  be nice if you at least commented,

 Oct 16, 2017
 #4
avatar+118667 
0

Thanks forthe comment Waffles :))

Melody  Oct 16, 2017
 #5
avatar+9479 
+1
Best Answer

 

Let's call the coordinates of the treasure  (x, y) .

 

The treasure is  10  yards away from  (0, 0) ,

and we know that the distance between any two points  = \(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)

 

Using the points  (x, y)  and  (0, 0)  and a distance of  10 , we have...

 

10  =  \(\sqrt{(x-0)^2+(y-0)^2}\,=\,\sqrt{x^2+y^2}\)                         →     100  =  x2 + y2

 

The treasure is  10  yards from  (15, 0) . So we know that

 

10  =  \(\sqrt{(x-15)^2+(y-0)^2}\,=\,\sqrt{(x-15)^2+y^2}\)          →     100  =  (x - 15)2 + y2

 

Now we have two equations and two variables.

 

They both equal 100, so we can set these equal.

 

x2 + y2  =  (x - 15)2 + y2

x2  =  (x - 15)2

x  =  ±(x - 15)

x  =  x - 15          or          x  =  -(x - 15)

0  =  -15                           x  =  -x + 15

 false                              2x  =  15

                                        x  =  15 / 2

 

Plug this value for  x  into  x2 + y2 = 100  to find the value of  y .

 

(15 / 2)2 + y2  =  100

y2  =  100 -  (15 / 2)2

y   =  ±√[ 100 -  (15 / 2)2 ]

y  ≈  6.6

 

Since there are only positive values of  y  on the map, the coordinates are  ≈  (7.5, 6.6)

hectictar Oct 16, 2017

4 Online Users