+0  
 
0
854
2
avatar+776 

Why does

\(\sum_{n=0}^{\infty}{2^{-n}}=2\)

but

\(\sum_{n=1}^{\infty}{n^{-1}}=\infty??????????????\)

 May 15, 2016
 #1
avatar
0

1) Because: Sum of: 1/1 + 1/2 + 1/4 + 1/8 + 1/16..........converges to 2!

2) Because: Sum of: 1/1 + 1/2 + 1/3 + 1/4 + 1/5............diverges to infinity. This is the Harmonic series.

 May 15, 2016
 #2
avatar+33661 
+5

Let S = 1 + 1/2 + 1/4 + 1/8 + 1/16 + ...

 

Write it as:  S = 1 + (1/2)*(1 + 1/2 + 1/4 + 1/8 + 1/16 + ...)

 

or  S = 1 + (1/2)*S

 

Subtract S/2 from both sides:  S/2 = 1

 

Multiply both sides by 2:   S = 2

 

Hence 2 = 1 + 1/2 + 1/4 + 1/8 + 1/16 + ...

 May 15, 2016

2 Online Users

avatar