+0  
 
+4
77
2
avatar+1164 

Compute
\(\frac{2 + 6}{4^{100}} + \frac{2 + 2 \cdot 6}{4^{99}} + \frac{2 + 3 \cdot 6}{4^{98}} + \dots + \frac{2 + 98 \cdot 6}{4^3} + \frac{2 + 99 \cdot 6}{4^2} + \frac{2 + 100 \cdot 6}{4}.\)

 Jul 4, 2023
 #1
avatar
0

sumfor(n, 1, 100, (2 +6*n) /(4^(101 - n)))==It converges to 200

 Jul 4, 2023
 #2
avatar
0

R==Common Ratio

 

R==99 / 400

 

SUM== 150.50 * [1 - (99/400)^100] / [1 - (99/400)], solve for SUM

 

SUM==200

 Jul 5, 2023

2 Online Users

avatar