Does the series converge or diverge? If it converges what is the sum? Show your work
\(\sum_{n=1}^{inf}-4(-1/2)^{n-1}\)
\(\sum \limits_{n=0}^\infty \alpha^n = \dfrac{1}{1-\alpha},~\forall \alpha \ni |\alpha|<1\\ \text{and does not converge otherwise}\)
\(\sum \limits_{n=1}^\infty ~-4\left(-\dfrac 1 2\right)^{n-1} = -4\left(\sum \limits_{n=0}^\infty~\left(-\dfrac 1 2\right)^n \right)\)
I leave it to you to apply the first line to the second.