We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
128
2
avatar+25 

Does the series converge or diverge? If it converges what is the sum? Show your work

\(\sum_{n=1}^{inf}-4(-1/2)^{n-1}\)

 Jun 6, 2019
 #1
avatar+6026 
+1

\(\sum \limits_{n=0}^\infty \alpha^n = \dfrac{1}{1-\alpha},~\forall \alpha \ni |\alpha|<1\\ \text{and does not converge otherwise}\)

 

\(\sum \limits_{n=1}^\infty ~-4\left(-\dfrac 1 2\right)^{n-1} = -4\left(\sum \limits_{n=0}^\infty~\left(-\dfrac 1 2\right)^n \right)\)

 

I leave it to you to apply the first line to the second.

 Jun 6, 2019
edited by Rom  Jun 6, 2019
 #2
avatar+103915 
+1

List the first few terms

 

-4, 2, -1, 1/2, -1/4, 1/8........

 

The common ratio  is  -1/2    and the first term is -4

 

So....the sum converges to

 

   -4                    -4

_______  =    _____  =   -4 (2/3)  =  -8/3

1 - (-1/2)           (3/2)

 

 

 

 

 

cool cool cool

 Jun 6, 2019

13 Online Users

avatar