If 4x≡8(mod20) and 3x≡16(mod20), then what is the remainder when x2 is divided by 20?
solve (4 x) mod 20 = 8
(3 x) mod 20 = 16 for x
x =20*n +12, where n =0, 1, 2, 3......etc.
The smallest x = 12
12^2 mod 20 =144 mod 20 =4 - remainder.
If
4x≡8(mod20) and 3x≡16(mod20), then what is the remainder when x2 is divided by 20?
(1)4x≡8(mod20)4x=8+20nn∈Z(2)3x≡16(mod20)3x=16+20mm∈Z(1)−(2):4x−3x=8−16+20(n−m)x=−8+20(n−m)x≡−8(mod20)x≡−8+20(mod20)x≡12(mod20)x=12+20zz∈Zx2=(12+20z)2x2=144+2∗12∗20z+20∗20z2x2≡144(mod20)x2≡144−7∗20(mod20)x2≡4(mod20)